Uniform convergence rates and uniform adaptive estimation in mixtures of regressions
In this thesis, we develop theoretical tools to examine estimators in non-parametric regression models in regard of uniform convergence rates and uniform adaptivity with respect to the smoothness of the parameter functions. Subsequently, those are applied to non-parametric regression models with Höl...
Uloženo v:
Hlavní autor: | |
---|---|
Další autoři: | |
Médium: | Dissertation |
Jazyk: | angličtina |
Vydáno: |
Philipps-Universität Marburg
2018
|
Témata: | |
On-line přístup: | Plný text ve formátu PDF |
Tagy: |
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Shrnutí: | In this thesis, we develop theoretical tools to examine estimators in non-parametric regression models in regard of uniform convergence rates and uniform adaptivity with respect to the smoothness of the parameter functions. Subsequently, those are applied to non-parametric regression models with Hölder-smooth parameter functions. One model is a mixture of Gaussian regressions and the other model is a mixture model with two components and an unspecified symmetric error distribution. |
---|---|
Fyzický popis: | 166 Seiten |
DOI: | 10.17192/z2019.0100 |