Positivität relativer kanonischer Bündel und Krümmung höherer direkter Bildgarben auf Familien von Calabi-Yau-Mannigfaltigkeiten
In dieser Arbeit werden geometrische Eigenschaften des Modulraums polarisierter Calabi-Yau-Mannigfaltigkeiten mittels Methoden der komplex-analytischen Differentialgeometrie untersucht. Dazu werden Familien polarisierter Calabi-Yau-Mannigfaltigkeiten betrachtet. Die Fasern einer solchen Familie besi...
Gespeichert in:
1. Verfasser: | |
---|---|
Beteiligte: | |
Format: | Dissertation |
Sprache: | Deutsch |
Veröffentlicht: |
Philipps-Universität Marburg
2015
|
Schlagworte: | |
Online-Zugang: | PDF-Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In dieser Arbeit werden geometrische Eigenschaften des Modulraums polarisierter Calabi-Yau-Mannigfaltigkeiten mittels Methoden der komplex-analytischen Differentialgeometrie untersucht. Dazu werden Familien polarisierter Calabi-Yau-Mannigfaltigkeiten betrachtet. Die Fasern einer solchen Familie besitzen eindeutige Ricci-flache Kähler-Metriken, deren Kohomologieklassen durch die Polarisierung vorgegeben sind. Diese Kähler-Metriken induzieren eine Hermite’sche Metrik auf dem relativen kanonischen Bündel der Familie, deren Krümmungsform studiert wird. Außerdem wird eine hinreichende Bedingung für die Existenz einer semi-Ricci-flachen Kähler-Metrik auf dem Totalraum einer Familie gezeigt. Des Weiteren werden gewisse höhere direkte Bildgarben betrachtet, die natürliche Hermite’sche Metriken tragen, welche die Weil-Petersson-Metrik auf dem Modulraum verallgemeinern. Der Krümmungstensor dieser Metriken wird berechnet und es werden einige Anwendungen aufgeführt. |
---|---|
DOI: | 10.17192/z2015.0401 |