Seshadri-Konstanten auf Abelschen Flächen

In der vorliegenden Arbeit werden Seshadri-Konstanten auf abelschen Flächen untersucht. Auf abelschen Flächen mit Picardzahl 1 gelang es Bauer (1999) die Seshadri-Konstanten vollständig zu berechnen. In den verbleibenden Picardzahlen 2, 3 und 4 lagen bisher nur Ergebnisse zu einigen Selbstprodukten...

Full description

Saved in:
Bibliographic Details
Main Author: Schmidt, Maximilian
Contributors: Bauer, Thomas (Prof. Dr.) (Thesis advisor)
Format: Dissertation
Language:German
Published: Philipps-Universität Marburg 2021
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In der vorliegenden Arbeit werden Seshadri-Konstanten auf abelschen Flächen untersucht. Auf abelschen Flächen mit Picardzahl 1 gelang es Bauer (1999) die Seshadri-Konstanten vollständig zu berechnen. In den verbleibenden Picardzahlen 2, 3 und 4 lagen bisher nur Ergebnisse zu einigen Selbstprodukten von elliptischen Kurven von Bauer und Schulz (2008) vor. In dieser Arbeit werden neue Methoden entwickelt, die es ermöglichen Seshadri-Konstanten auf abelschen Flächen mit Picardzahl 2 vollständig zu berechnen und sogar die Seshadri-Funktion darzustellen. Es lassen sich außerdem Strukturaussagen über die Seshadri-Funktion treffen und es zeigt sich, dass diese eine verblüffende Komplexität ähnlich wie die Cantor-Funktion besitzt. Darüber hinaus werden in Picardzahl 3 und 4 weitere Ergebnisse für beliebige Produkte von elliptischen Kurven erzielt. Es wird auf diesen Produkten die Frage vollständig beantwortet, wann alle Seshadri-Konstanten ganzzahlig sind.
Physical Description:149 Pages
DOI:https://doi.org/10.17192/z2021.0478