Gorenstein stable surfaces satisfying K_X^2 = 2 and χ(O_X)=4
We define and study a concrete stratification of the moduli space of Gorenstein stable surfaces X satisfying K_X^2 = 2 and χ(O_X ) = 4, by first establishing an isomorphism with the moduli space of plane octics with certain singularities, which is then easier to handle concretely. In total, there a...
Saved in:
Main Author: | |
---|---|
Contributors: | |
Format: | Doctoral Thesis |
Language: | English |
Published: |
Philipps-Universität Marburg
2018
|
Subjects: | |
Online Access: | PDF Full Text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We define and study a concrete stratification of the moduli space of Gorenstein stable surfaces X satisfying K_X^2 = 2 and χ(O_X ) = 4, by first establishing an isomorphism with the moduli space of plane octics with certain singularities, which is then easier to handle concretely. In total, there are 47 inhabited strata with altogether 78 components. |
---|---|
Physical Description: | 100 Pages |
DOI: | 10.17192/z2019.0050 |