High-dimensional, robust, heteroscedastic variable selection with the adaptive LASSO, and applications to random coefficient regression
In this thesis, theoretical results for the adaptive LASSO in high-dimensional, sparse linear regression models with potentially heavy-tailed and heteroscedastic errors are developed. In doing so, the empirical pseudo Huber loss is considered as loss function and the main focus is sign-consistency o...
Збережено в:
Автор: | |
---|---|
Інші автори: | |
Формат: | Dissertation |
Мова: | Англійська |
Опубліковано: |
Philipps-Universität Marburg
2021
|
Предмети: | |
Онлайн доступ: | PDF-повний текст |
Теги: |
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Резюме: | In this thesis, theoretical results for the adaptive LASSO in high-dimensional, sparse linear regression models with potentially heavy-tailed and heteroscedastic errors are developed. In doing so, the empirical pseudo Huber loss is considered as loss function and the main focus is sign-consistency of the resulting estimator. Simulations illustrate the favorable numerical performance of the proposed methodology in comparison to the ordinary adaptive LASSO. Subsequently, those results are applied to the linear random coefficient regression model, more precisely to the means, variances and covariances of the coefficients. Furthermore, sufficient conditions for the identifiability of the first and second moments, as well as asymptotic results for a fixed number of coefficients are given. |
---|---|
Фізичний опис: | 140 Seiten |
DOI: | 10.17192/z2021.0248 |