Label Ranking with Probabilistic Models

Diese Arbeit konzentriert sich auf eine spezielle Prognoseform, das sogenannte Label Ranking. Auf den Punkt gebracht, kann Label Ranking als eine Erweiterung des herkömmlichen Klassifizierungproblems betrachtet werden. Bei einer Anfrage (z. B. durch einen Kunden) und einem vordefinierten Set von Kan...

Full description

Saved in:
Bibliographic Details
Main Author: Cheng, Weiwei
Contributors: Hüllermeier, Eyke (Prof.) (Thesis advisor)
Format: Doctoral Thesis
Language:English
Published: Philipps-Universität Marburg 2012
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diese Arbeit konzentriert sich auf eine spezielle Prognoseform, das sogenannte Label Ranking. Auf den Punkt gebracht, kann Label Ranking als eine Erweiterung des herkömmlichen Klassifizierungproblems betrachtet werden. Bei einer Anfrage (z. B. durch einen Kunden) und einem vordefinierten Set von Kandidaten Labels (zB AUDI, BMW, VW), wird ein einzelnes Label (zB BMW) zur Vorhersage in der Klassifizierung benötigt, während ein komplettes Ranking aller Label (zB BMW> VW> Audi) für das Label Ranking erforderlich ist. Da Vorhersagen dieser Art, bei vielen Problemen der realen Welt nützlich sind, können Label Ranking-Methoden in mehreren Anwendungen, darunter Information Retrieval, Kundenwunsch Lernen und E-Commerce eingesetzt werden. Die vorliegende Arbeit stellt eine Auswahl an Methoden für Label-Ranking vor, die Maschinelles Lernen mit statistischen Bewertungsmodellen kombiniert. Wir konzentrieren wir uns auf zwei statistische Ranking-Modelle, das Mallows- und das Plackett-Luce-Modell und zwei Techniken des maschinellen Lernens, das Beispielbasierte Lernen und das Verallgemeinernde Lineare Modell.
DOI:10.17192/z2012.0493