Die metaplektische Darstellung: Holomorphe Fortsetzung und Jordan-theoretische Realisierung
Diese Arbeit ist ein Beitrag zur Geometrischen Quantisierung. Sie ist in drei Teile gegliedert: Der erste ist der klassischen Theorie gewidmet und zeigt, im Rahmen des allgemeinen Gelfand-Gindikin-Programmes, dass die Metaplektische Darstellung als Erweiterung einer Darstellung einer Unterhalbgrupp...
Главный автор: | |
---|---|
Другие авторы: | |
Формат: | Dissertation |
Язык: | немецкий |
Опубликовано: |
Philipps-Universität Marburg
2010
|
Предметы: | |
Online-ссылка: | PDF-полный текст |
Метки: |
Добавить метку
Нет меток, Требуется 1-ая метка записи!
|
The present thesis is a contribution to "geometric quantization". It is structured in three parts: the first is part of the general Gelfand-Gindikin-programm, and shows that the metaplectic representation can be seen as an extension of a representation of a subsemigroup in the complexification of the real symplectic group. The second part is concerned with a representation of the real symplectic group in terms of Jordan algebras, and in the third, based on the results of part two and the new state space, a projectively flat Hilbertspace bundle is given. A concrete realization of the Shilov boundary of certain complex structures leads, as application, to a concrete description of the fibers over boundary points in the metaplectic corrected bundle extended to this points.