Neue experimentelle Methoden zur räumlich hochaufgelösten Charakterisierung von Diffusionsprozessen in Batterie-Elektrodenmaterialien auf Basis der Rasterkraftmikroskopie

Batteriebasierte Energiespeicher – darunter insbesondere die Lithiumionenbatterie – stellen eine Schlüsseltechnologie zur erfolgreichen Bewältigung der Energiewende dar. Moderne Lithiumionenbatterien sind hochkomplexe, partikulär aufgebaute Systeme, deren Materialdesign ein tiefgehendes Verständnis...

Whakaahuatanga katoa

I tiakina i:
Ngā taipitopito rārangi puna kōrero
Kaituhi matua: Renz, Diemo
Ētahi atu kaituhi: Roling, Bernhard (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Hōputu: Dissertation
Reo:Tiamana
I whakaputaina: Philipps-Universität Marburg 2021
Ngā marau:
Urunga tuihono:Kuputuhi katoa PDF
Ngā Tūtohu: Tāpirihia he Tūtohu
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!

Battery-based energy storage systems - including the lithium ion battery in particular - represent a key technology for successfully mastering the energy transition. Modern lithium ion batteries are highly complex, particulate systems whose material design requires an in-depth understanding of the transport processes involed. Until now, there has been a lack of analytical methods to investigate transport processes with high spatial resolution in order to characterize individual, nanoscopically small components of a battery and thus accurately identify potential bottlenecks. In the present work, a contribution to fill this gap is demonstrated. Two novel methods for nanoscale analysis on battery materials are developed and presented. Both methods are based on the atomic force microscopy. The focus of the investigations is in particular on the spatially high-resolution quantification of ambipolar diffusion in battery electrode materials, which is a fundamentally important transport process in lithium ion batteries.