Uniform convergence rates and uniform adaptive estimation in mixtures of regressions
In this thesis, we develop theoretical tools to examine estimators in non-parametric regression models in regard of uniform convergence rates and uniform adaptivity with respect to the smoothness of the parameter functions. Subsequently, those are applied to non-parametric regression models with Höl...
Na minha lista:
Autor principal: | |
---|---|
Outros Autores: | |
Formato: | Dissertation |
Idioma: | inglês |
Publicado em: |
Philipps-Universität Marburg
2018
|
Assuntos: | |
Acesso em linha: | Texto integral em PDF |
Tags: |
Sem tags, seja o primeiro a adicionar uma tag!
|
Resumo: | In this thesis, we develop theoretical tools to examine estimators in non-parametric regression models in regard of uniform convergence rates and uniform adaptivity with respect to the smoothness of the parameter functions. Subsequently, those are applied to non-parametric regression models with Hölder-smooth parameter functions. One model is a mixture of Gaussian regressions and the other model is a mixture model with two components and an unspecified symmetric error distribution. |
---|---|
Descrição Física: | 166 Seiten |
DOI: | 10.17192/z2019.0100 |