Photoconductive Terahertz Emitters and Detectors for the Operation with 1550 nm Pulsed Fiber Lasers

In this thesis, photoconductive terahertz (THz) emitters and detectors suitable for the excitation with femtosecond laser pulses centered on 1550 nm are investigated. The motivation for this study is the development of cost-efficient, flexible and rapid THz time-domain-spectroscopy (TDS) systems...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Globisch, Björn
Beteiligte: Koch, Martin (Prof. Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Englisch
Veröffentlicht: Philipps-Universität Marburg 2017
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this thesis, photoconductive terahertz (THz) emitters and detectors suitable for the excitation with femtosecond laser pulses centered on 1550 nm are investigated. The motivation for this study is the development of cost-efficient, flexible and rapid THz time-domain-spectroscopy (TDS) systems for the application in growing fields like non-destructive testing (NDT) and inline process monitoring. In order to achieve this goal, the physics of the generation and detection of THz radiation in photoconductors is investigated. The combination of experimental data with the analytic modeling of the carrier dynamics in THz photoconductors allows for a detailed understanding of the interplay between the growth conditions of the photoconductor and the properties of the fabricated THz device. In this work, three different photoconductive materials were studied as THz emitters and detectors. All these photoconductors contain layers of the ternary semiconductor indium gallium arsenide (InGaAs). When InGaAs is grown lattice matched to an indium phosphide (InP) substrate, the material can be excited by erbium doped femtosecond fiber lasers with a central wavelength around 1550 nm. Therefore, InGaAs is a predestinated absorber in photoconductive THz emitters and detectors. Aside from the common InGaAs layers, the photoconductors investigated in this thesis feature essentially different electrical and optical properties. The reason is that theoretical models and experimental results obtained within the last two decades revealed different demands on photoconductors for THz emitters and detectors. On the detector side, a sub-picosecond electron lifetime is required for the detection of broadband THz radiation with high dynamic range. In contrast, photoconductive materials for THz emitters require high breakdown fields and carrier mobility, whereas the electron lifetime is of minor importance. Therefore, the first part of this work is dedicated to the development of InGaAs-based photoconductors for THz emitters and receivers. Photoconductors with sub-picosecond electron lifetimes were obtained by low-temperature growth of InGaAs with molecular beam epitaxy (MBE). At temperatures below 300 °C the growth is non-stoichiometric and arsenic antisites are incorporated as point defects into the lattice. When these antisites are ionized they serve as fast trapping and recombination centers. In this work, it is shown that the concentration of the (ionized) antisites can be controlled by the growth temperature, by using an additional p-dopant (beryllium), and by the temperature and the duration of a post-growth annealing step. Electron lifetimes as short as 140 fs were obtained. The precise adjustment of all these parameters allowed for the design and the fabrication of THz receivers with a spectral bandwidth of up to 6 THz and a peak dynamic range exceeding 95 dB. For THz emitters, a high mobility, which is generally equivalent to a low defect density, is required in order to enable the efficient acceleration of the photoexcited carriers in the electric field applied to the emitter. Due to the high density of defects, low-temperature-grown (LTG) InGaAs based photoconductors are not the material of choice for THz emitters. Instead, a material comprising almost defect free layers of InGaAs surrounded by InAlAs barriers containing a high density of deep defects was used. These properties were achieved at growth temperatures close to 400 °C in a MBE system. At those temperatures, alloying forms deep defects inside the InAlAs layers, whereas InGaAs grows almost defect free. A THz-power of up to 112 μW ± 7 μW was measured for emitters fabricated from this photoconductor, which is an increase by a factor of 100 compared to emitters made of the LTG material. By combining the optimized photoconductive emitters and receivers compact THz-TDS systems with up to 6 THz bandwidth and 90 dB peak dynamic range were realized. In addition, an all fiber-coupled THz spectrometer with kHz measurement rate as well as a fully fibercoupled near-field imaging system with a lateral resolution of 100 μm was demonstrated with these optimized photoconductive devices. However, a critical disadvantage of individual THz emitter and detector devices appears when THz-TDS measurements are performed in reflection geometry. Since many applications in NDT and in-line process monitoring allow only one side access to the sample under test, reflection measurements are the common use-case of THz-TDS in these fields. In this thesis, a fiber-coupled, monolithically integrated THz transceiver was developed, which combines the emitter and the receiver on a single photoconductive chip. As the photoconductor, Be-doped LTG-InGaAs/InAlAs with 0.5 ps electron lifetime was used in order to enable a broadband detection. The optical coupling of the transceiver was realized with the help of a polymer waveguide chip. With a bandwidth of 4.5 THz and a peak dynamic range larger than 70 dB this THz transceiver showed a significant performance increase compared to previous transceiver concepts (2 THz bandwidth and 50 dB peak dynamic range). In order to further increase the performance of THz transceivers a novel photoconductor had to be developed, which combines the required properties of THz emitters and detectors in the same material. For this purpose, iron (Fe) doped InGaAs grown by MBE was investigated. At growth temperatures close to 400 °C iron could be incorporated homogenously up to concentrations of 5 × 1020 cm-3. The resulting material combined sub-picosecond electron lifetime with high breakdown fields and high mobility. Applied as a photoconductive emitter, 75 μW ± 5 μW of radiated THz power were measured. As a detector, THz pulses with a bandwidth of up to 6 THz and a peak dynamic range of 95 dB were obtained. Hence, Fe-doped InGaAs has not only the potential to replace the relatively complex state-of-the art photoconductors, it also bears great potential for future integrated THz devices. In conclusion, the systematic study of the electrical properties and the carrier dynamics in InGaAs-based photoconductive materials led to significant improvements of individual THz emitter and detector devices. The detectable bandwidth was increased by 50 % from below 4 THz to 6 THz and the emitted THz power was enhanced by a factor of 100. Further, the knowledge from these studies was exploited for the fabrication of a fiber-coupled, monolithically integrated THz transceiver with a 4.5 THz bandwidth and 70 dB peak dynamic range. These results are a significant increase in THz performance compared to previous transceiver concepts (2 THz bandwidth and 50 dB dynamic range). In order to allow for further improvements of THz transceivers and integrated THz devices, Fe-doped InGaAs was investigated as a photoconductive emitter and detector. Due to the unique combination of subpicosecond electron lifetime, high resistivity (> 2 Ω cm) and high mobility (> 900 cm2V-1s-1) Fe-doped InGaAs showed a performance comparable to the optimized THz photoconductors. Hence, the results presented in this work pave the way for compact and integrated THz devices for applications in industrial environments.
Umfang:169 Seiten
DOI:10.17192/z2017.0466