Genetik und Biochemie des Katabolismus von 5-Hydroxyectoin und Ectoin in dem marinen Bakterium Ruegeria pomeroyi DSS-3

Im Rahmen dieser Arbeit wurde der Katabolismus von Ectoinen durch das marine Bakterium Ruegeria pomeroyi DSS-3 untersucht. Basierend auf der Hypothese eines katabolen Mechanismus für die Umwandlung von 5-Hydroxyectoin zu Ectoin und dem anschließenden Abbau zu L-Aspartat wurden die physiologischen, g...

Full description

Saved in:
Bibliographic Details
Main Author: Schulz, Annina
Contributors: Bremer, Erhard (Prof. Dr.) (Thesis advisor)
Format: Dissertation
Language:German
Published: Philipps-Universität Marburg 2016
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Im Rahmen dieser Arbeit wurde der Katabolismus von Ectoinen durch das marine Bakterium Ruegeria pomeroyi DSS-3 untersucht. Basierend auf der Hypothese eines katabolen Mechanismus für die Umwandlung von 5-Hydroxyectoin zu Ectoin und dem anschließenden Abbau zu L-Aspartat wurden die physiologischen, genetischen und biochemischen Voraussetzungen des Katabolismus analysiert. Eine chromosomale Deletion des enuR-uehABC-usp-eutABCDE-ssd-atf-Operons verhinderte das Wachstum von R. pomeroyi DSS-3 auf sowohl Ectoin als auch 5-Hydroxyectoin als Kohlenstoff- und Stickstoffquelle. Bioinformatische Analysen zeigten, dass diese Fähigkeit ausschließlich auf das Phylum der Proteobacteria beschränkt ist und einer hohen genetischen Diversität unterliegt. Durch 'Northern Dot Blot'-Analysen und Reportergenfusionen wurde gezeigt, dass die Transkription des Genclusters sowohl von einem konstitutiven als auch von einem substratinduzierbaren Promotor erfolgt. Der MocR-Typ Transkriptionsregulator EnuR ist sowohl Repressor als auch Aktivator des vorliegenden Genclusters und ist neben seiner prosthetischen Gruppe Pyridoxal-5'-Phosphat auch von zwei Stoffwechselintermediaten als interne Induktoren abhängig. In dem katabolen Ectoin-Operon wird zusätzlich für den Transkriptionsfaktor, der 'feast-and-famine'-Familie, AsnC kodiert, welcher neben EnuR für die Aktivierung des Promotors verantwortlich ist. Für die Aufnahme und den Katabolismus von alternativen Stickstoffquellen ist in vielen bakteriellen Organismen, so auch in R. pomeroyi DSS-3, unter anderem auch das NtrXY-Zweikomponentensystem zuständig. Basierend auf biochemischen und genetischen Untersuchungen, wird ein Modell für die transkriptionelle Kontrolle des katabolen Ectoin- Genclusters beschrieben, welches von den zwei Transkriptionsregulatoren EnuR und AsnC und dem Zweikomponentensystem der generellen Stickstoffkontrolle NtrXY abhängt.
Physical Description:187 Pages
DOI:https://doi.org/10.17192/z2016.0475