Anwendungsmöglichkeiten und Praktikabilität der Independent Component Analysis (ICA) in der funktionellen Magnetresonanztomographie (fMRT)

Die in dieser Arbeit behandelte Thematik gibt einen Überblick über den Nutzen und die Anwendungsmöglichkeiten der Independent Component Analysis (ICA) mit Hilfe von computerbasierenden Auswerteverfahren. Eine Voraussetzung für die statistische Auswertung von zerebralen Vor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wiedemeyer, Christian
Beteiligte: Konrad, Carsten (Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Deutsch
Veröffentlicht: Philipps-Universität Marburg 2011
Schlagworte:
Online-Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Die in dieser Arbeit behandelte Thematik gibt einen Überblick über den Nutzen und die Anwendungsmöglichkeiten der Independent Component Analysis (ICA) mit Hilfe von computerbasierenden Auswerteverfahren. Eine Voraussetzung für die statistische Auswertung von zerebralen Vorgängen ist die Aufnahme von Bildserien mit Hilfe der MRT, die Einblicke in Struktur und Funktionsweise des menschlichen Gehirns erlaubt. Darauf folgt eine Weiterverarbeitung der Bildserien durch statistische Methoden wie das Allgemeine Lineare Modell (GLM). Jedoch treten neue Methoden der Datenauswertung wie die ICA vermehrt in den Mittelpunkt des Interesses. Die ICA gestattet es, statistisch unabhängige Komponenten aus einem Datensatz zu extrahieren. Der Vorteil der ICA gegenüber GLM-Ansätzen besteht darin auf a priori Annahmen verzichten und explorativ arbeiten zu können. Dieser Vorteil reiht die ICA in eine Gruppe von Auswertemethoden ein, die als Blind Source Separation (BSS) bekannt sind. Der hier genutzte Algorithmus nutzt die von Christian F. Beckmann eingeführte Probabilistic Independent Component Analysis (PICA) und das zugehörige MELODIC Programm. Mit Hilfe visueller und motorischer Stimuli wurde die Fähigkeit der ICA zum Auffinden von Signalkomponenten aus MRT-Datensätzen des Cortex untersucht. Hierzu fand als Paradigma sowohl ein einfaches Fingertapping, die Projektion eines Schachbrettmusters als auch die vom Probanden willkürlich veränderte Respiration in Hypo- Normo- und Hyperventilation Verwendung. Für zukünftige Anwendungen der ICA ist die vorgestellte Methode der Artefaktbereinigung unter Einbeziehung eines GLM-Modells von Datensätzen ein viel versprechender Ansatz, um Auswertungen, die auf bisherige Standardmethoden beruhen, zu verbessern.
DOI:10.17192/z2011.0345