Biodegradable Paclitaxel-loaded Nanoparticles and Stent Coatings as Local Delivery Systems for the Prevention of Restenosis

Despite improved technologies restenosis remains the main problem of catheter-based interventions after a percutaneous transluminal angioplasty in artery disease. Local and sustained application of antiproliferative agents is a promising approach to solve the problem of intimal hyper...

全面介绍

Gespeichert in:
书目详细资料
主要作者: Westedt, Ulrich
其他作者: Kissel, Thomas (Prof. Dr.) (BetreuerIn (Doktorarbeit))
格式: Dissertation
语言:英语
出版: Philipps-Universität Marburg 2004
主题:
在线阅读:PDF-Volltext
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:Despite improved technologies restenosis remains the main problem of catheter-based interventions after a percutaneous transluminal angioplasty in artery disease. Local and sustained application of antiproliferative agents is a promising approach to solve the problem of intimal hyperplasia. In recent years, two different concepts for local drug delivery have attained increased importance: On the one hand, colloidal drug carriers, which can be infused directly into the vessel wall during the angioplasty procedure using special delivery catheters and on the other hand, the development of drug eluting stents. Biocompatible, biodegradable polymers are one of the most important instruments used to control the release of pharmacological active substances. A new type of branched, biodegradable polyesters, poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) (PVA-g-PLGA), possesses very interesting features for the local and sustained release of paclitaxel. Therefore, the objective of this work was to investigate these polymers with regard to the preparation of paclitaxel loaded nanoparticles and stent coatings, and to evaluate their applicability as drug carriers to prevent intimal hyperplasia.
DOI:10.17192/z2004.0098