Biodegradable Paclitaxel-loaded Nanoparticles and Stent Coatings as Local Delivery Systems for the Prevention of Restenosis

Despite improved technologies restenosis remains the main problem of catheter-based interventions after a percutaneous transluminal angioplasty in artery disease. Local and sustained application of antiproliferative agents is a promising approach to solve the problem of intimal hyper...

詳細記述

保存先:
書誌詳細
第一著者: Westedt, Ulrich
その他の著者: Kissel, Thomas (Prof. Dr.) (論文の指導者)
フォーマット: Dissertation
言語:英語
出版事項: Philipps-Universität Marburg 2004
主題:
オンライン・アクセス:PDFフルテキスト
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
その他の書誌記述
要約:Despite improved technologies restenosis remains the main problem of catheter-based interventions after a percutaneous transluminal angioplasty in artery disease. Local and sustained application of antiproliferative agents is a promising approach to solve the problem of intimal hyperplasia. In recent years, two different concepts for local drug delivery have attained increased importance: On the one hand, colloidal drug carriers, which can be infused directly into the vessel wall during the angioplasty procedure using special delivery catheters and on the other hand, the development of drug eluting stents. Biocompatible, biodegradable polymers are one of the most important instruments used to control the release of pharmacological active substances. A new type of branched, biodegradable polyesters, poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) (PVA-g-PLGA), possesses very interesting features for the local and sustained release of paclitaxel. Therefore, the objective of this work was to investigate these polymers with regard to the preparation of paclitaxel loaded nanoparticles and stent coatings, and to evaluate their applicability as drug carriers to prevent intimal hyperplasia.
DOI:10.17192/z2004.0098