Turbo autoencoders for the DNA data storage channel with Autoturbo-DNA

DNA, with its high storage density and long-term stability, is a potential candidate for a next-generation storage device. The DNA data storage channel, composed of synthesis, amplification, storage, and sequencing, exhibits error probabilities and error profiles specific to the components of the ch...

Descripció completa

Guardat en:
Dades bibliogràfiques
Autors principals: Welzel, Marius, Dreßler, Hagen, Heider, Dominik
Format: Article
Idioma:anglès
Publicat: Philipps-Universität Marburg 2024
Matèries:
Accés en línia:PDF a text complet
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
Descripció
Sumari:DNA, with its high storage density and long-term stability, is a potential candidate for a next-generation storage device. The DNA data storage channel, composed of synthesis, amplification, storage, and sequencing, exhibits error probabilities and error profiles specific to the components of the channel. Here, we present Autoturbo-DNA, a PyTorch framework for training error-correcting, overcomplete autoencoders specifically tailored for the DNA data storage channel. It allows training different architecture combinations and using a wide variety of channel component models for noise generation during training. It further supports training the encoder to generate DNA sequences that adhere to user-defined constraints. Autoturbo-DNA exhibits error-correction capabilities close to non-neural-network state-of-the-art error correction and constrained codes for DNA data storage. Our results indicate that neural-network-based codes can be a viable alternative to traditionally designed codes for the DNA data storage channel.
Descripció de l’ítem:Gefördert durch den Open-Access-Publikationsfonds der UB Marburg.
DOI:10.1016/j.isci.2024.109575