Bonding in Low-Coordinated Organoarsenic and Organoantimony Compounds: A Threshold Photoelectron Spectroscopic Investigation

Methyl and methylene compounds of arsenic and antimony have been studied by photoelectron photoion coincidence spectroscopy to investigate their relative stability. While for As both HAs=CH2, As−CH3 and the methylene compound As=CH2 are identified in the spectrum, the only Sb compound observed is Sb...

Full description

Saved in:
Bibliographic Details
Main Authors: Karaev, Emil, Gerlach, Marius, Faschingbauer, Lukas, Ramler, Jacqueline, Krummenacher, Ivo, Lichtenberg, Crispin, Hemberger, Patrick, Fischer, Ingo
Format: Article
Language:English
Published: Philipps-Universität Marburg 2023
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Methyl and methylene compounds of arsenic and antimony have been studied by photoelectron photoion coincidence spectroscopy to investigate their relative stability. While for As both HAs=CH2, As−CH3 and the methylene compound As=CH2 are identified in the spectrum, the only Sb compound observed is Sb−CH3. Thus, there is a step in the main group 15 between As and Sb, regarding the relative stability of the methyl compounds. Ionisation energies, vibrational frequencies and spin-orbit splittings were determined for the methyl compound from photoion mass-selected photoelectron spectra. Although the spectroscopic results for organoantimony resemble those for the previously investigated bismuth compounds, EPR spectroscopic experiments indicate a far lower tendency for methyl transfer for Sb(CH3)3 compared to Bi(CH3)3. This study concludes investigations on low-valent organopnictogen compounds.
DOI:10.1002/chem.202300637