Zariski-Kammern und stabile Basisorte auf Del-Pezzo- und K3-Flächen

Zariski-Kammern liefern eine Zerlegung des Big-Kegels einer glatten projektiven Fläche in rationale lokal polyedrische Teilkegel mit interessanten Eigenschaften aus der Sicht von Linearsystemen: Im Inneren jedes Teilkegels ist der stabile Basisort konstant und die Volumenfunktion ist in jedem Teilke...

Full description

Saved in:
Bibliographic Details
Main Author: Funke, Michael
Contributors: Bauer, Thomas (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:German
Published: Philipps-Universität Marburg 2009
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Zariski-Kammern liefern eine Zerlegung des Big-Kegels einer glatten projektiven Fläche in rationale lokal polyedrische Teilkegel mit interessanten Eigenschaften aus der Sicht von Linearsystemen: Im Inneren jedes Teilkegels ist der stabile Basisort konstant und die Volumenfunktion ist in jedem Teilkegel durch ein homogenes quadratisches Polynom gegeben. In der vorliegenden Arbeit werden Zariski-Kammern auf Del-Pezzo- und K3-Flächen untersucht. Es wird der Aspekt des Zählens der Zariski-Kammern aufgegriffen und insbesondere am Beispiel der Del-Pezzo-Flächen diskutiert. Die Zerlegung des Big-Kegels in Zariski-Kammern wird insbesondere für K3-Flächen mit der Zerlegung in Weyl-Kammern verglichen. Die gegenseitigen Inklusionen von Zariski- und Weyl-Kammern werden auf K3-Flächen genau beschrieben. Abschließend wird die lokale Geometrie der Zariski-Kammern auf Kummerflächen studiert.
Physical Description:62 Pages
DOI:10.17192/z2009.0104