Octahedral Chiral-at-Metal Iridium and Rhodium Complexes as Versatile Asymmetric Catalysts

Over the past several years, our group has been interested in designing and synthesizing different novel octahedral chiral-at-metal complexes and their application in asymmetric catalysis, including visible-light-induced asymmetric catalysis. This thesis mainly includes two parts: one is the versa...

Description complète

Enregistré dans:
Détails bibliographiques
Auteur principal: Shen, Xiaodong
Autres auteurs: Meggers, Eric (Prof. Dr. ) (Directeur de thèse)
Format: Dissertation
Langue:anglais
Publié: Philipps-Universität Marburg 2016
Sujets:
Accès en ligne:Texte intégral en PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Over the past several years, our group has been interested in designing and synthesizing different novel octahedral chiral-at-metal complexes and their application in asymmetric catalysis, including visible-light-induced asymmetric catalysis. This thesis mainly includes two parts: one is the versatile asymmetric catalysis by octahedral chiral-at-metal iridium complexes, and the other one is the visible-light-promoted asymmetric α-amination by octahedral chiral-at-metal rhodium complex. In the first part of this thesis, octahedral chiral-at-metal iridium complexes IrS and IrO are used as highly effective chiral Lewis acid catalysts for a variety of asymmetric reactions, including Friedel-Crafts alkylations, Michael additions with CH-acidic compounds, 1,3-dipolar cycloadditions, Diels Alder cycloadditions, hetero Diels Alder cycloadditions and Henry reactions. In the second part of the thesis, a very efficient photoactivated enantioselective radical amination of 2-acyl imidazoles catalyzed by an octahedral chiral-at-metal rhodium complex RhO is introduced. Rhodium complex here serves a dual function, namely as a chiral Lewis acid to catalyze asymmetric enolate chemistry and furthermore as a light-activated smart initiator of a radical chain process.
Description matérielle:315 Seiten
DOI:10.17192/z2016.0121