Octahedral Chiral-at-Metal Iridium and Rhodium Complexes as Versatile Asymmetric Catalysts

Over the past several years, our group has been interested in designing and synthesizing different novel octahedral chiral-at-metal complexes and their application in asymmetric catalysis, including visible-light-induced asymmetric catalysis. This thesis mainly includes two parts: one is the versa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Shen, Xiaodong
Otros Autores: Meggers, Eric (Prof. Dr. ) (Orientador)
Formato: Dissertation
Lenguaje:inglés
Publicado: Philipps-Universität Marburg 2016
Materias:
Acceso en línea:Texto Completo PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Over the past several years, our group has been interested in designing and synthesizing different novel octahedral chiral-at-metal complexes and their application in asymmetric catalysis, including visible-light-induced asymmetric catalysis. This thesis mainly includes two parts: one is the versatile asymmetric catalysis by octahedral chiral-at-metal iridium complexes, and the other one is the visible-light-promoted asymmetric α-amination by octahedral chiral-at-metal rhodium complex. In the first part of this thesis, octahedral chiral-at-metal iridium complexes IrS and IrO are used as highly effective chiral Lewis acid catalysts for a variety of asymmetric reactions, including Friedel-Crafts alkylations, Michael additions with CH-acidic compounds, 1,3-dipolar cycloadditions, Diels Alder cycloadditions, hetero Diels Alder cycloadditions and Henry reactions. In the second part of the thesis, a very efficient photoactivated enantioselective radical amination of 2-acyl imidazoles catalyzed by an octahedral chiral-at-metal rhodium complex RhO is introduced. Rhodium complex here serves a dual function, namely as a chiral Lewis acid to catalyze asymmetric enolate chemistry and furthermore as a light-activated smart initiator of a radical chain process.
Descripción Física:315 Seiten
DOI:10.17192/z2016.0121