Positivität relativer kanonischer Bündel und Krümmung höherer direkter Bildgarben auf Familien von Calabi-Yau-Mannigfaltigkeiten

In dieser Arbeit werden geometrische Eigenschaften des Modulraums polarisierter Calabi-Yau-Mannigfaltigkeiten mittels Methoden der komplex-analytischen Differentialgeometrie untersucht. Dazu werden Familien polarisierter Calabi-Yau-Mannigfaltigkeiten betrachtet. Die Fasern einer solchen Familie besi...

תיאור מלא

שמור ב:
מידע ביבליוגרפי
מחבר ראשי: Braun, Matthias
מחברים אחרים: Schumacher, Georg (Prof. Dr.) (BetreuerIn (Doktorarbeit))
פורמט: Dissertation
שפה:גרמנית
יצא לאור: Philipps-Universität Marburg 2015
נושאים:
גישה מקוונת:PDF-Volltext
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
תיאור
סיכום:In dieser Arbeit werden geometrische Eigenschaften des Modulraums polarisierter Calabi-Yau-Mannigfaltigkeiten mittels Methoden der komplex-analytischen Differentialgeometrie untersucht. Dazu werden Familien polarisierter Calabi-Yau-Mannigfaltigkeiten betrachtet. Die Fasern einer solchen Familie besitzen eindeutige Ricci-flache Kähler-Metriken, deren Kohomologieklassen durch die Polarisierung vorgegeben sind. Diese Kähler-Metriken induzieren eine Hermite’sche Metrik auf dem relativen kanonischen Bündel der Familie, deren Krümmungsform studiert wird. Außerdem wird eine hinreichende Bedingung für die Existenz einer semi-Ricci-flachen Kähler-Metrik auf dem Totalraum einer Familie gezeigt. Des Weiteren werden gewisse höhere direkte Bildgarben betrachtet, die natürliche Hermite’sche Metriken tragen, welche die Weil-Petersson-Metrik auf dem Modulraum verallgemeinern. Der Krümmungstensor dieser Metriken wird berechnet und es werden einige Anwendungen aufgeführt.
DOI:10.17192/z2015.0401