Microscopic Theory of Linear and Nonlinear Terahertz Spectroscopy of Semiconductors

This Thesis presents a fully microscopic theory to describe terahertz (THz)-induced processes in optically-excited semiconductors. The formation process of excitons and other quasi-particles after optical excitation has been studied in great detail for a variety of conditions. Here, the formation pr...

全面介紹

Gespeichert in:
書目詳細資料
主要作者: Steiner, Johannes
其他作者: Kira, Mackillo (Prof.) (BetreuerIn (Doktorarbeit))
格式: Dissertation
語言:英语
出版: Philipps-Universität Marburg 2008
主題:
在線閱讀:PDF-Volltext
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:This Thesis presents a fully microscopic theory to describe terahertz (THz)-induced processes in optically-excited semiconductors. The formation process of excitons and other quasi-particles after optical excitation has been studied in great detail for a variety of conditions. Here, the formation process is not modelled but a realistic initial many-body state is assumed. In particular, the linear THz response is reviewed and it is demonstrated that correlated quasi-particles such as excitons and plasmons can be unambiguously detected via THz spectroscopy. The focus of the investigations, however, is on situations where the optically-excited many-body state is excited by intense THz fields. While weak pulses detect the many-body state, strong THz pulses control and manipulate the quasi-particles in a way that is not accessible via conventional techniques. The nonlinear THz dynamics of exciton populations is especially interesting because similarities and differences to optics with atomic systems can be studied.
實物描述:139 Seiten
DOI:10.17192/z2009.0275