Activation and Regulation of the 4-Hydroxyphenylacetate Decarboxylase System from C. difficile

Summary Humans must adopt to live in a microbial world. The number of microbes associated with the human body alone exceeds the total number of body cells by more than one order of magnitude. Besides, the overall genetic information harboured by the microbial consortium in the human gut exceeds by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Blaser, Martin
Beteiligte: Selmer, Thorsten (Dr.) (BetreuerIn (Doktorarbeit))
Format: Dissertation
Sprache:Englisch
Veröffentlicht: Philipps-Universität Marburg 2007
Schlagworte:
Online Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

Zusammenfassung Der Mensch muss sich damit auseinandersetzen, in einer von Bakterien dominierten Welt zu leben. Alleine die Zahl der Mikroorganismen, die den menschlichen Körper besiedeln, übersteigt die Zahl menschlicher Zellen um das Zehnfache. Ebenso ist die genetische Information, die beispielsweise in den Bewohnern des menschlichen Darmes gespeichert ist, um ein Vielfaches größer als das humane Genom. Viele der hier hinterlegten Informationen können einen direkten Einfluss auf das Wohlbefinden des Menschen ausüben. Das Bemühen, einige dieser Reaktionen genauer zu verstehen, wird daher von der Wissenschaft vorangetrieben und war auch Triebfeder der hier vorgelegten Arbeit, die sich ein vertieftes Verständnis der Aktivierung und Regulation des 4-Hydroxyphenylacetat (HPA) Decarboxylase-Systems aus Clostridium difficile zum Ziel gesetzt hatte. Das HPA Decarboxylase System katalysiert den letzten Schritt der Tyrosinfermentation und setzt als zelltoxisches Endprodukt Kresol frei. Der postulierte Mechanismus dieser Reaktion beinhaltet eine Anzahl radikalischer Zwischenprodukte und ist auf Protein-, wie auch auf Zellebene streng reguliert: Neben zwei Protein-Komponenten (Aktivierendes Enzym: HpdA und Decarboxylase: HpdBC) beinhaltet das System fünf redox-aktive Eisen-Schwefel Zentren und ist abhängig von S-Adenosylmethionin (SAM) als Radikalstarter sowie einer externen Elektronenquelle. Im Verlauf dieser Arbeit konnte gezeigt werden, dass das aktivierende Enzym drei redox-aktive [4Fe-4S] Zentren enthält. Die anderen Vertreter dieser Proteinfamilie (SAM-Radikal Familie) koordinieren oft nur ein einziges, bereits gut untersuchtes Metall-Zentrum. Die Beschreibung der zwei zusätzlichen Zentren durch Mutationen der Bindungsstellen sowie biochemische Analysen bestätigte deren katalytische Notwendigkeit. Das aktivierende Enzym katalysiert unter Zuhilfenahme von SAM und einer externen Elektronenquelle die Bildung eines Glycyl-Radikals in der Decarboxylase. Eine Quantifizierung des hierbei ebenfalls entstehenden 5’Deoxyadenosin erlaubte nicht nur die Beschreibung eines – dem katalytischen Prozess parallel laufenden – Leerlaufzyklus’, sondern bestätigte auch die Abhängigkeit des Aktivierungsprozesses von externen Elektronenquellen, da eine Speicherung nicht möglich scheint. Im Gegensatz dazu konnte gezeigt werden, dass die Decarboxylase, welche ebenfalls zwei [4Fe-4S] Zentren besitzt, Elektronen in gewissem Umfang speichern und zur Unterdrückung des Glycyl-Radikals verwenden kann. Dieser – erstmals als transiente Aktivierung beschriebene – Prozess unterscheidet die HPA Decarboxylasen von den meisten anderen, gut untersuchten Vertretern, der Glycyl-Radikal Familie, bei denen das erzeugte Radikalsignal über längere Zeit stabil bleibt. Die in diesem Zusammenhang gelöste Kristallstruktur von CsdBC gab weiteren Aufschluss über die Koordination der [4Fe-4S] Zentren durch die kleine Untereinheit (CsdC) und bestätigte den für die Katalyse zum Kresol notwendigen hetero-oktameren Komplex des nicht aktivierten Vorläufers. Sowohl bei der schnellen Aktivierung des Systems als auch bei der intrinsischen Inaktivierung durch die kleine Untereinheit, spielen die Redox-Zustände der [4Fe-4S] Zentren eine entscheidende Rolle bei der Regulation des HPA Decarboxylase Systems.