Hyperbolizität in der komplexen Analysis und der algebraischen Geometrie

In dieser Arbeit werden ganze Abbildungen in den projektiven Raum betrachtet, die mehrkomponentige Hyperflächen bestimmten Grades meiden, und es wird deren algebraische Entartung bzw. Konstanz gezeigt. Hauptresultat ist der Beweis eines Spezialfalls der Kobayashi-Vermutung, nämlich der Nachweis der...

Full description

Saved in:
Bibliographic Details
Main Author: Raufuß, Anke
Contributors: Schumacher, Georg (Prof. Dr.) (Thesis advisor)
Format: Doctoral Thesis
Language:German
Published: Philipps-Universität Marburg 2006
Subjects:
Online Access:PDF Full Text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In dieser Arbeit werden ganze Abbildungen in den projektiven Raum betrachtet, die mehrkomponentige Hyperflächen bestimmten Grades meiden, und es wird deren algebraische Entartung bzw. Konstanz gezeigt. Hauptresultat ist der Beweis eines Spezialfalls der Kobayashi-Vermutung, nämlich der Nachweis der Hyperbolizität des Komplements einer sechskomponentigen Fläche von Grad sieben im dreidimensionalen projektiven Raum (ebenso einer Fläche mit fünf Komponenten, von denen keine eine Ebene ist). Dies wird mit elementaren Methoden und sehr direkt mit Hilfe des Umparametrisierungslemmas von Brody erreicht.
Physical Description:85 Pages
DOI:10.17192/z2007.0062