AI-based multi-PRS models outperform classical single-PRS models

Polygenic risk scores (PRS) calculate the risk for a specific disease based on the weighted sum of associated alleles from different genetic loci in the germline estimated by regression models. Recent advances in genetics made it possible to create polygenic predictors of complex human traits, in...

Cijeli opis

Spremljeno u:
Bibliografski detalji
Glavni autori: Klau, Jan Henric, Maj, Carlo, Klinkhammer, Hannah, Krawitz, Peter M., Mayr, Andreas, Hillmer, Axel M., Schumacher, Johannes, Heider, Dominik
Format: Članak
Jezik:engleski
Izdano: Philipps-Universität Marburg 2023
Teme:
Online pristup:PDF cijeli tekst
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
Opis
Sažetak:Polygenic risk scores (PRS) calculate the risk for a specific disease based on the weighted sum of associated alleles from different genetic loci in the germline estimated by regression models. Recent advances in genetics made it possible to create polygenic predictors of complex human traits, including risks for many important complex diseases, such as cancer, diabetes, or cardiovascular diseases, typically influenced by many genetic variants, each of which has a negligible effect on overall risk. In the current study, we analyzed whether adding additional PRS from other diseases to the prediction models and replacing the regressions with machine learning models can improve overall predictive performance. Results showed that multi-PRS models outperform single-PRS models significantly on different diseases. Moreover, replacing regression models with machine learning models, i.e., deep learning, can also improve overall accuracy.
Opis predmeta:Gefördert durch den Open-Access-Publikationsfonds der UB Marburg.
Digitalni identifikator objekta:10.3389/fgene.2023.1217860