Molecular and quantitative genetic variation within and between populations of the declining grassland species Saxifraga granulata

Formerly common plant species are expected to be particularly susceptible to recent habitat fragmentation. We studied the population genetics of 19 recently fragmented Saxifraga granulata populations (max. distance 61 km) in Luxembourg and neighboring Germany using RAPD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Autoren: Walisch, Tania J., Colling, Guy, Hermant, Sylvie, Matthies, Diethart
Format: Artikel
Sprache:Englisch
Veröffentlicht: Philipps-Universität Marburg 2022
Schlagworte:
Online-Zugang:PDF-Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Formerly common plant species are expected to be particularly susceptible to recent habitat fragmentation. We studied the population genetics of 19 recently fragmented Saxifraga granulata populations (max. distance 61 km) in Luxembourg and neighboring Germany using RAPD markers and a common garden experiment. We assessed (1) the relationships between plant fitness, quantitative genetic variation, molecular geneticvariation, and population size; and (2) the relative importance of genetic drift and selection in shaping genetic variation. Molecular genetic diversity was high but did not correlate with population size, habitat conditions, or plant performance. Genetic differentiation was low (FST= 0.079 ± 0.135), and there was no isolation by distance. Longevity, clonality, and the long- lived seed bank of S. granulata may have prevented strong genetic erosion and genetic differentiation among populations. However, ge -netic distinctness increased with decreasing genetic diversity indicating that randomgenetic drift occurred in the studied populations. Quantitative and molecular geneticvariations were correlated, and their differentiation (QST vs. FST) among S. granulatapopulations was similar, suggesting that mainly random processes have shaped the quantitative genetic differentiation among populations. However, pairwise quantita-tive genetic distances increased with geographic and climatic distances, even when adjusted for molecular genetic distances, indicating diversifying selection. Our results indicate that long- lived clonal species may be buffered at least temporarily against the negative effects of fragmentation. The relationship between quantitative geneticand geographic distance may be a more sensitive indicator of selection than QST– FSTdifferences.
Beschreibung:Gefördert durch den Open-Access-Publikationsfonds der UB Marburg.
DOI:10.1002/ece3.9462