Radiative pattern of intralayer and interlayer excitons in two-dimensional WS2/WSe2 heterostructure

Two-dimensional (2D) heterostructures (HS) formed by transition-metal dichalcogenide (TMDC) monolayers offer a unique platform for the study of intralayer and interlayer excitons as well as moiré-pattern-induced features. Particularly, the dipolar charge-transfer exciton comprising an electron and a...

ver descrição completa

Na minha lista:
Detalhes bibliográficos
Autoren: Aly, Mohammed Adel, Shah, Manan, Schneider, Lorenz Maximilian, Kang, Kyungnam, Koch, Martin, Yang, Eui-Hyeok, Rahimi-Iman, Arash
Formato: Artigo
Idioma:inglês
Publicado em: Philipps-Universität Marburg 2022
Assuntos:
Acesso em linha:Texto integral em PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!
Descrição
Resumo:Two-dimensional (2D) heterostructures (HS) formed by transition-metal dichalcogenide (TMDC) monolayers offer a unique platform for the study of intralayer and interlayer excitons as well as moiré-pattern-induced features. Particularly, the dipolar charge-transfer exciton comprising an electron and a hole, which are confined to separate layers of 2D semiconductors and Coulomb-bound across the heterojunction interface, has drawn considerable attention in the research community. On the one hand, it bears significance for optoelectronic devices, e.g. in terms of charge carrier extraction from photovoltaic devices. On the other hand, its spatially indirect nature and correspondingly high longevity among excitons as well as its out-of-plane dipole orientation render it attractive for excitonic Bose–Einstein condensation studies, which address collective coherence effects, and for photonic integration schemes with TMDCs. Here, we demonstrate the interlayer excitons’ out-of-plane dipole orientation through angle-resolved spectroscopy of the HS photoluminescence at cryogenic temperatures, employing a tungsten-based TMDC HS. Within the measurable light cone, the directly-obtained radiation profile of this species clearly resembles that of an in-plane emitter which deviates from that of the intralayer bright excitons as well as the other excitonic HS features recently attributed to artificial superlattices formed by moiré patterns.
Descrição do item:Gefördert durch den Open-Access-Publikationsfonds der UB Marburg.
DOI:10.1038/s41598-022-10851-3