Publikationsserver der Universitätsbibliothek Marburg

Titel:Investigation of SAMD1 ablation in mice
Autor:Campbell, Bruce
Weitere Verfasser:Weber, Lisa M.; Engle, Sandra J.; Ozolinš, Terence R. S.; Bourassa, Patricia; Aiello, Robert; Liefke, Robert
Veröffentlicht:2023
URI:https://archiv.ub.uni-marburg.de/es/2024/0434
URN: urn:nbn:de:hebis:04-es2024-04344
DOI: https://doi.org/10.1038/s41598-023-29779-3
DDC:610 Medizin
Publikationsdatum:2024-01-17
Lizenz:https://creativecommons.org/licenses/by/4.0

Dokument

Schlagwörter:
Chromatin, Developmental biology

Summary:
SAM domain-containing protein 1 (SAMD1) has been implicated in atherosclerosis, as well as in chromatin and transcriptional regulation, suggesting a versatile and complex biological function. However, its role at an organismal level is currently unknown. Here, we generated SAMD1−/− and SAMD1+/− mice to explore the role of SAMD1 during mouse embryogenesis. Homozygous loss of SAMD1 was embryonic lethal, with no living animals seen after embryonic day 18.5. At embryonic day 14.5, organs were degrading and/or incompletely developed, and no functional blood vessels were observed, suggesting failed blood vessel maturation. Sparse red blood cells were scattered and pooled, primarily near the embryo surface. Some embryos had malformed heads and brains at embryonic day 15.5. In vitro, SAMD1 absence impaired neuronal differentiation processes. Heterozygous SAMD1 knockout mice underwent normal embryogenesis and were born alive. Postnatal genotyping showed a reduced ability of these mice to thrive, possibly due to altered steroidogenesis. In summary, the characterization of SAMD1 knockout mice suggests a critical role of SAMD1 during developmental processes in multiple organs and tissues.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten