Publikationsserver der Universitätsbibliothek Marburg

Titel:Einfluss der manuellen Thoraxkompression auf Beatmungsparameter der maschinellen Ventilation bei der kardiopulmonalen Reanimation im Simulationsmodell
Autor:Speer, Tillmann Raphael Nicolas
Weitere Beteiligte: Kill, Clemens (Prof. Dr. med.)
Veröffentlicht:2018
URI:https://archiv.ub.uni-marburg.de/diss/z2018/0257
DOI: https://doi.org/10.17192/z2018.0257
URN: urn:nbn:de:hebis:04-z2018-02578
DDC: Medizin
Titel (trans.):Influence of manual chest compression on ventilator presets during cardiopulmonary resuscitation in a simulation model
Publikationsdatum:2018-06-04
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Künstliche Beatmung, maschinelle Beatmung, Simulationsmodell, Kardiopulmonale Reanimation, Emergency Medi, Notfallmedizin, Ventilation, Pulmonary, Simulation model, Chest Compression Synchronised Ventilation, CCSV, Respiratory, No, Simulation, Chest Compression Synchronised Ventilation, manuelle Thoraxkompression, CCSV, Cardiopulmonary Resuscitation, Wiederbelebung, Rettungswesen

Zusammenfassung:
Die Leitlinien des European Resuscitation Council (ERC) empfehlen die maschinelle Ventilation mit einem Tidalvolumen (Vt) von 6–7ml/kg Körpergewicht und einer Frequenz (f) von 10/min nach endotrachealer Intubation während der kardiopulmonalen Reanimation. Dennoch ist die Evidenz für ein bestimmtes Beatmungsmuster oder eine differenzierte Ventilationsstrategie gering. Diese Dissertation untersucht den Einfluss der manuellen Thoraxkompression auf die Umsetzbarkeit der Ventilationsparameter (Tidalvolumen, Vt und Inspirationsdruck, Pinsp) bei den drei Beatmungsmustern Intermittent Positive Pressure Ventilation (IPPV), BiLevel-Ventilation (BiLevel) und Chest Compression Synchronised Ventilation (CCSV) im Simulationsmodell. Auf diese Weise sollen weitere Hinweise zur Durchführbarkeit der genannten Beatmungsmuster während der kardiopulmonalen Reanimation gesammelt und damit deren Stellenwert beurteilt werden. Nach Genehmigung durch die Ethikkommission des Fachbereichs Medizin der Philipps-Universität Marburg (Aktenzeichen: Studie 36/14) führten 90 Rettungsassistentinnen und Rettungsassistenten über einen Zeitraum von zwei Minuten ununterbrochene manuelle Thoraxkompressionen an einem Reanimationsphantom mit einem speziellen Lungenmodell durch. Die drei verschiedenen Beatmungsmuster IPPV, BiLevel und CCSV wurden für jeweils 30s in einer randomisierten Reihenfolge appliziert. CCSV ist ein neuartiger, druckkontrollierter Beatmungsmodus, bei dem die Insufflation zusammen mit der Kompressionsphase abgegeben wird. Diese Synchronisation ist gleichermaßen abhängig von einer raschen Erhöhung des Atemwegsdrucks (25–375 mbar/s) über einen vordefinierten Druck (0,9–3,7 mbar über dem Positiven Endexspiratorischen Druck, PEEP) in Anschluss an eine Exspirationsphase, die eine bestimmte Zeitdauer (200–340 ms) überschreitet. Die voreingestellten Parameter waren bei IPPV: Vt = 450 ml, PEEP = 0 mbar, f = 10/min; bei BiLevel: Pinsp = 19mbar, PEEP = 5 mbar, f = 10/min und bei CCSV: Pinsp = 60 mbar, PEEP = 0 mbar, Tinsp = 205 ms, f = Thoraxkompressionsrate). Sie wurden mit den tatsächlich gemessenen verglichen und die relative Häufigkeit ermittelt (Toleranzbereich ± 10 %). Die statistische Berechnung erfolgte mit dem Chi-Quadrat Vierfeldertest, dem Friedman-Test und dem Wilcoxon-Rang- Test. Die Ergebnisse (gemessene Werte bzw. relative Häufigkeit) sind im Folgenden als Median (25/75 %-Perzentil) angegeben. Das Tidalvolumen (Vt) bei IPPV betrug 399 ml (386/411 ml), der Inspirationsdruck (Pinsp) bei BiLevel 22,0 mbar (19,7/25,6 mbar) und der bei CCSV 55,2 mbar (52,6/56,7 mbar). Die relative Häufigkeit des Erreichens der voreingestellten Beatmungsparameter betrug bei IPPV 40 % (0/100 %) im Vergleich zu BiLevel 20 % (0/100 %), p = 0,37 und im Vergleich zu CCSV 71 % (50/83 %), p < 0,02. Der Inspirationsdruck (Pinsp) überschritt den Toleranzbereich bei BiLevel in 80 % (0/100 %) der Beatmungen und bei CCSV in 0 % (0/0 %) der Beatmungen, p < 0,001. Diese Arbeit zur kardiopulmonalen Reanimation im Simulationsmodell zeigt, dass sich die Beatmungsmuster hinsichtlich der Umsetzbarkeit der voreingestellten Beatmungsparameter (Vt und Pinsp) signifikant unterscheiden. CCSV zeigt die höchste Trefferquote verglichen mit den konventionellen Beatmungsmustern IPPV und BiLevel. Bei IPPV wird das eingestellte Tidalvolumen unter- und bei BiLevel der Inspirationsdruck regelhaft überschritten. Unter CCSV traten keine Überschreitungen des Inspirationsdrucks auf. Diese Dissertation ergänzt folglich die begrenzte Datenlage zu Beatmungsparametern während manueller Thoraxkompressionen und legt nahe, dass CCSV ein vielversprechender Ansatz zur Verbesserung der Beatmung während der Reanimation sein kann.

Bibliographie / References

  1. Cohen T. A Comparison of Active Compression-Decompression Cardiopulmonary Resuscitation with Standard Cardiopulmonary Resuscitation for Cardiac Arrests Occuring in the Hospital. NEJM 1993;329:1918-1921.
  2. Lafuente-Lafuente C, Melero-Bascones M. Active chest compression- decompression for cardiopulmonary resuscitation. Cochrane Database Syst Rev 2013;(9):CD002751.
  3. Cohen T, Tucker K, Lurie K, Redberg R, Dutton J, Dwyer K, et al. Active compression-decompression. A new method of cardiopulmonary resuscitation. Cardiopulmonary Resuscitation Working Group. JAMA 1992; 267(21):2916-23.
  4. Chang MW, Coffeen P, Lurie KG, Shultz J, Bache RJ, White CW. Active compression-decompression CPR improves vital organ perfusion in a dog model of ventricular fibrillation. Chest 1994;106(4):1250-1259.
  5. Wang CH, Tsai MS, Chang WT, Huang CH, Ma MHM, Chen WJ, et al. Active Compression-Decompression Resuscitation and Impedance Threshold Device for Out-of-Hospital Cardiac Arrest. Crit Care Med 2015;43(4):889- 896.
  6. Cohen T, Tucker K, Redberg R, Lurie K, Chin M, Dutton J, et al. Active compression-decompression resuscitation: a novel method of cardiopulmonary resuscitation. Am Heart J 1992;124(5):1145-50.
  7. Mauer D, Schneider T, Dick W, Elich D, Mauer M. Active compression- decompression resuscitation: a prospective, randomized study in a two-tiered EMS system with physicians in the field. Resuscitation 1996;33:125-134.
  8. Tucker KJ, Galli F, Savitt MA, Kahsai D, Bresnahan L, Redberg RF. Active compression-decompression resuscitation: Effect on resuscitation success after in-hospital cardiac arrest. J Am Coll Cardiol 1994;24(1):201-209.
  9. Bernhard M, Benger JR. Airway management during cardiopulmonary resuscitation. Curr Opin Crit Care 2015;21(3):183-187.
  10. Soar J, Nolan JP. Airway management in cardiopulmonary resuscitation. Curr Opin Crit Care 2013;19(3):181-187.
  11. Nolan JP, Soar J. Airway techniques and ventilation strategies. Curr Opin Crit Care 2008;14:279-286.
  12. Gabrielli A, Layon AJ, Wenzel V, Dorges V, Idris AH. Alternative ventilation strategies in cardiopulmonary resuscitation. Curr Opin Crit Care 2002; 8(3):199-211.
  13. Smekal D, Johansson J, Huzevka T, Rubertsson S. A pilot study of mechanical chest compressions with the LUCAS device in cardiopulmonary resuscitation. Resuscitation 2011;82(6):702-706.
  14. Schwab T, Callaham M, Madsen C, Utecht T. A randomized clinical trial of active compression-decompression CPR vs standard CPR in out-of-hospital cardiac arrest in two cities. JAMA 1995;273(16):1261-1268.
  15. Wang CH, Huang CH, Chang WT, Tsai MS, Lu TC, Yu PH, et al. Association between early arterial blood gas tensions and neurological outcome in adult patients following in-hospital cardiac arrest. Resuscitation 2015;89:1-7.
  16. Aufderheide TP, Nichol G, Rea TD, Brown SP, Leroux BG, Pepe PE, et al. A trial of an impedance threshold device in out-of-hospital cardiac arrest. N Engl J Med 2011;365(9):798-806.
  17. Ordelman SCMA, Aelen P, Woerlee PH, van Berkom PFJ, Scheffer GJ, Noordergraaf GJ. A ventilation technique for oxygenation and carbon dioxide elimination in CPR: Continuous insufflation of oxygen at three levels of pressure in a pig model. Resuscitation 2015;97:103-108.
  18. Kill C, Torossian A, Freisburger C, Dworok S, Massmann M, Nohl T, et al. Basic life support with four different compression/ventilation ratios in a pig model: The need for ventilation. Resuscitation 2009;80(9):1060-1065.
  19. Koster RW, Baubin MA, Bossaert LL, Caballero A, Cassan P, Castrén M, et al. Basismaßnahmen zur Wiederbelebung Erwachsener und Verwendung automatisierter externer Defibrillatoren -Sektion 2 der Leitlinien zur Reanimation 2010 des European Resuscitation Counsil. Notfall + Rettungsmedizin 2010;13(7):523-542.
  20. Park MAJ, Freebairn RC, Gomersall CD. Bench performance of ventilators during simulated paediatric ventilation. Anaesth Intensive Care 2013; 41(3):349-358.
  21. Lee HM, Cho KH, Choi YH, Yoon SY, Choi YH. Can you deliver accurate tidal volume by manual resuscitator? Emerg Med J 2008;25(10):632-634.
  22. Ewy GA, Kern KB, Sanders AB, Newburn D, Valenzuela TD, Clark L, et al. Cardiocerebral resuscitation for cardiac arrest. Am J Med 2006;119(1):6-9.
  23. Kellum MJ, Kennedy KW, Barney R, Keilhauer FA, Bellino M, Zuercher M, et al. Cardiocerebral Resuscitation Improves Neurologically Intact Survival of Patients With Out-of-Hospital Cardiac Arrest. Ann Emerg Med 2008; 52(3):244-252.
  24. Mohler MJ, Wendel CS, Mosier J, Itty A, Fain M, Clark L, et al. Cardiocerebral resuscitation improves out-of-hospital survival in older adults. J Am Geriatr Soc 2011;59(5):822-826.
  25. Kellum MJ, Kennedy KW, Ewy GA. Cardiocerebral Resuscitation Improves Survival of Patients with Out-of-Hospital Cardiac Arrest. Am J Med 2006; 119(4):335-340.
  26. Ewy GA. Cardiocerebral resuscitation: The new cardiopulmonary resuscitation. Circulation 2005;111(16):2134-2142.
  27. No author listed. Cardiopulmonary resuscitation: Statement by the ad hoc committee on cardiopulmonary resuscitation of the division of medical sciences, national academy of sciences-national research council. JAMA 1966;198(4):372-379.
  28. Abella BS, Sandbo N, Vassilatos P, Alvarado JP, O'Hearn N, Wigder HN, et al. Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation 2005;111(4):428-34.
  29. Kill C, Galbas M, Neuhaus C, Hahn O, Wallot P, Kesper K, et al. Chest Compression Synchronized Ventilation versus Intermitted Positive Pressure Ventilation during Cardiopulmonary Resuscitation in a Pig Model. PLoS One 2015;10(5):e0127759.
  30. Yannopoulos D, Aufderheide TP, Gabrielli A, Beiser DG, McKnite SH, Pirrallo RG, et al. Clinical and hemodynamic comparison of 15:2 and 30:2 compression-to-ventilation ratios for cardiopulmonary resuscitation. Crit Care Med 2006;34(5):1444-1449.
  31. Axelsson C, Nestin J, Svensson L, Axelsson ÅB, Herlitz J. Clinical consequences of the introduction of mechanical chest compression in the EMS system for treatment of out-of-hospital cardiac arrest -A pilot study. Resuscitation 2006;71(1):47-55.
  32. Aufderheide TP, Pirrallo RG, Provo TA, Lurie KG. Clinical evaluation of an inspiratory impedance threshold device during standard cardiopulmonary resuscitation in patients with out-of-hospital cardiac arrest. Crit Care Med 2005;33(4):734-740.
  33. Gazmuri RJ, Ayoub IM, Radhakrishnan J, Motl J, Upadhyaya MP. Clinically plausible hyperventilation does not exert adverse hemodynamic effects during CPR but markedly reduces end-tidal p CO 2 . Resuscitation 2012; 83(2):259-264.
  34. Kouwenhoven WB, Jude JR, Knickerbocker GG. CLOSED-CHEST CARDIAC MASSAGE. JAMA 1960;173(10):1064-1067.
  35. Lurie KG, Yannopoulos D, McKnite SH, Herman ML, Idris AH, Nadkarni VM, et al. Comparison of a 10-breaths-per-minute versus a 2-breaths-per- minute strategy during cardiopulmonary resuscitation in a porcine model of cardiac arrest. Respir Care 2008;53(7):862-870.
  36. Shultz JJ, Mianulli MJ, Gisch TM, Coffeen PR, Haidet GC, Lurie KG. Comparison of exertion required to perform standard and active compression-decompression cardiopulmonary resuscitation. Resuscitation 1995;29(1):23-31.
  37. Bertrand C, Hemery F, Carli P, Goldstein P, Espesson C, Rüttimann M, et al. Constant flow insufflation of oxygen as the sole mode of ventilation during out-of-hospital cardiac arrest. Intensive Care Med 2006;32(6):843- 851.
  38. Steen S, Liao Q, Pierre L, Paskevicius A, Sjöberg T. Continuous intratracheal insufflation of oxygen improves the efficacy of mechanical chest compression- active decompression CPR. Resuscitation 2004;62(2):219-227.
  39. Hayes MM, Ewy GA, Anavy ND, Hilwig RW, Sanders AB, Berg RA, et al. Continuous passive oxygen insufflation results in a similar outcome to positive pressure ventilation in a swine model of out-of-hospital ventricular fibrillation. Resuscitation 2007;74(2):357-365.
  40. Branditz FK, Kern KB, Campbell SC. Continuous Transtracheal Oxygen Delivery During Cardiopulmonary Resuscitation. Chest 1989;95(2):441-448.
  41. Criley J, Blaufuss A, Kissel G. Cough-induced cardiac compression: Self-administered form of cardiopulmonary resuscitation. JAMA 1976; 236(11):1246-1250.
  42. Lurie KG, Lindo C, Chin J. CPR: The p stands for plumber. JAMA 1990; 264(13):1661.
  43. Aufderheide TP, Lurie KG. Death by hyperventilation: a common and life- threatening problem during cardiopulmonary resuscitation. Crit Care Med 2004;32(9 Suppl):345-351.
  44. Kleinsasser A, Lindner KH, Schaefer A, Loeckinger A. Decompression- triggered positive-pressure ventilation during cardiopulmonary resuscitation improves pulmonary gas exchange and oxygen uptake. Circulation 2002; 106(3):373-378.
  45. Wang HE, Prince D, Stephens SW, Herren H, Daya MR, Richmond N, et al. Design and Implementation of the Resuscitation Outcomes Consortium Pragmatic Airway Resuscitation Trial (PART). Resuscitation 2016;101:57- 64.
  46. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e V (DGAI). Deutsches Reanimationsregister -Geschichte. URL: https://www.
  47. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e V (DGAI). Deutsches Reanimationsregister -Startseite. URL: https://www.
  48. Die Hinweise zur Erkennung von Plagiaten habe ich zur Kenntnis genommen.
  49. Tømte Ø, Sjaastad I, Wik L, Kuzovlev A, Eriksen M, Norseng PA, et al. Discriminating the effect of accelerated compression from accelerated decompression during high-impulse CPR in a porcine model of cardiac arrest. Resuscitation 2010;81(4):488-492.
  50. Deakin CD, O'Neill JF, Tabor T. Does compression-only cardiopulmonary resuscitation generate adequate passive ventilation during cardiac arrest? Resuscitation 2007;75(1):53-59.
  51. Idris AH, Wenzel V, Becker LB, Banner MJ, Orban DJ. Does hypoxia or hypercarbia independently affect resuscitation from cardiac arrest? Chest 1995;108(2):522-528.
  52. O'Neill JF, Deakin CD. Do we hyperventilate cardiac arrest patients? Resuscitation 2007;73(1):82-5.
  53. Markstaller K, Karmrodt J, Doebrich M, Wolcke B, Gervais H, Weiler N, et al. Dynamic computed tomography: A novel technique to study lung aeration and atelectasis formation during experimental CPR. Resuscitation 2002;53(3):307-313.
  54. Pirrallo RG, Aufderheide TP, Provo TA, Lurie KG. Effect of an inspiratory impedance threshold device on hemodynamics during conventional manual cardiopulmonary resuscitation. Resuscitation 2005;66(1):13-20.
  55. Markstaller K, Rudolph A, Karmrodt J, Gervais HW, Goetz R, Becher A, et al. Effect of chest compressions only during experimental basic life support on alveolar collapse and recruitment. Resuscitation 2008;79(1):125-132.
  56. Lindner KH, Pfenninger EG, Lurie KG, Schurmann W, Lindner IM, Ahnefeld, Friedrich W. Effects of Active Compression-Decompression Resuscitation on Myocardial and Cerebral Blood Flow in Pigs. Circulation 1993;88:1254-1263.
  57. Wik L, Naess PA, Ilebekk A, Nicolaysen G, Steen PA. Effects of various degrees of compression and active decompression on haemodynamics, end- tidal CO 2 and ventilation during cardiopulmonary resuscitation of pigs. Resuscitation 1996;31:45-57.
  58. Wolcke B, Böhmer R, Gervais H. Erste Ergebnisse einer tierexperimentel- len, randomisierten Untersuchung zur kardiopulmonalen Reanimation mit kontinuierlichem positivem Atemwegsdruck (CPAP). Anästh Intensivmed 2013;54:18.
  59. Deakin C, Nolan J, Soar J, Sunde K, Koster R, Smith G, et al. Erweiterte Reanimationsmaßnahmen für Erwachsene ("advanced life support") -Sektion 4 der Leitlinien zur Reanimation 2010 des European Resuscitation Counsil. Notfall + Rettungsmedizin 2010;13(7):559-620.
  60. Gräsner JT, Masterson S. EuReCa and international resuscitation registries. Curr Opin Crit Care 2015;21:215-219.
  61. Gräsner JT, Lefering R, Koster RW, Masterson S, Böttiger BW, Herlitz J, et al. EuReCa ONE-27 Nations, ONE Europe, ONE Registry. A prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation 2016;105:188-195.
  62. Nolan JP, Soar J, Zideman DA, Biarent D, Bossaert LL, Deakin C, et al. European Resuscitation Council Guidelines for Resuscitation 2010. Resuscitation 2010;81(10):1219-1451.
  63. Nolan JP, Soar J, Zideman DA, Biarent D, Bossaert LL, Deakin C, et al. European Resuscitation Council Guidelines for Resuscitation 2010. Resuscitation 2010;81(10):1219-1451.
  64. Koster RW, Baubin MA, Bossaert LL, Caballero A, Cassan P, Castrén M, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 2. Adult basic life support and use of automated external defibrillators. Resuscitation 2010;81(10):1277-1292.
  65. Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, et al. European Resuscitation Council Guidelines for Resuscitation 2015 -Section 1. Executive summary. Resuscitation 2015;95:1-80.
  66. Perkins GD, Handley AJ, Koster RW, Castrén M, Smyth MA, Olasveengen T, et al. European Resuscitation Council Guidelines for Resuscitation 2015 -Section 2. Adult basic life support and automated external defibrillation. Resuscitation 2015;95:81-99.
  67. Soar J, Nolan JP, Böttiger BW, Perkins GD, Lott C, Carli P, et al. European Resuscitation Council Guidelines for Resuscitation 2015 -Section 3. Adult advanced life support. Resuscitation 2015;95:100-147.
  68. Maconochie IK, Bingham R, Eich C, López-Herce J, Rodríguez-Núñez A, Rajka T, et al. European Resuscitation Council Guidelines for Resuscitation 2015 -Section 6. Paediatric life support. Resuscitation 2015;95:223-248.
  69. Wyllie J, Bruinenberg J, Roehr CC, Rüdiger M, Trevisanuto D, Urlesberger B. European Resuscitation Council Guidelines for Resuscitation 2015 -Section 7. Resuscitation and support of transition of babies at birth. Resuscitation 2015;95:249-263.
  70. Marjanovic N, Le Floch S, Jaffrelot M, L'Her E. Evaluation of manual and automatic manually triggered ventilation performance and ergonomics using a simulation model. Respir Care 2014;59(5):735-742.
  71. Shultz JJ, Coffeen P, Sweeney M, Detloff B, Kehler C, Pineda E, et al. Evaluation of standard and active compression-decompression CPR in an acute human model of ventricular fibrillation. Circulation 1994;89(2):684- 693.
  72. Excel für Windows [Computerprogramm].
  73. Bortz J, Döring N. Forschungsmethoden und Evaluation: für Human-und Sozialwissenschaftler. 4. Auflage, Springer-Verlag, Berlin Heidelberg, 2007.
  74. Berdowski J, Berg RA, Tijssen JGP, Koster RW. Global incidences of out-of- hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies. Resuscitation 2010;81(11):1479-1487.
  75. Yannopoulos D, Aufderheide TP, McKnite S, Kotsifas K, Charris R, Nadkarni V, et al. Hemodynamic and respiratory effects of negative tracheal pressure during CPR in pigs. Resuscitation 2006;69(3):487-494.
  76. Kuschinsky W. Blut-Hirn-Schranke, Liquor cerebrospinalis, Hirndurchblu- tung und Hirnstoffwechsel. In: Klinke R, Pape HC, Krutz A, Silbernagl S. Physiologie. 6. Auflage, Georg Thieme Verlag KG, Stuttgart New York, 2010.
  77. Eisenberg MS. History of the Science of Cardiopulmonary Resuscitation. In: Ornato JP, Peberdy, MA. Contemporary Cardiology: Cardiopulmonary Resuscitation. Humana Press Inc., Totowa, New Jersey, 2005.
  78. Aufderheide TP, Sigurdsson G, Pirrallo RG, Yannopoulos D, McKnite S, von Briesen C, et al. Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation 2004;109(16):1960-1965.
  79. Cabrini L, Beccaria P, Landoni G, Biondi-Zoccai GGL, Sheiban I, Cristofolini M, et al. Impact of impedance threshold devices on cardiopulmonary resuscitation: a systematic review and meta-analysis of randomized controlled studies. Crit Care Med 2008;36(5):1625-1632.
  80. Sunde K, Wik L, Naess PA, Grund F, Nicolaysen G, Steen PA. Improved haemodynamics with increased compression-decompression rates during ACD-CPR in pigs. Resuscitation 1998;39(3):197-205.
  81. Lurie KG, Coffeen P, Shultz J, McKnite S, Detloff B, Mulligan K. Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve. Circulation 1995;91(6):1629-1632.
  82. Hodgetts TJ, Kenward G, Vlackonikolis I, Payne S, Castle N, Crouch R, et al. Incidence, location and reasons for avoidable in-hospital cardiac arrest in a district general hospital. Resuscitation 2002;54(2):115-123.
  83. Atwood C, Eisenberg MS, Herlitz J, Rea TD. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 2005;67(1):75-80.
  84. Baubin M, Sumann G, Rabl W, Eibl G, Wenzel V, Mair P. Increased frequency of thorax injuries with ACD-CPR. Resuscitation 1999;41(1):33- 38.
  85. Sandroni C, Ferro G, Santangelo S, Tortora F, Mistura L, Cavallaro F, et al. In-hospital cardiac arrest: Survival depends mainly on the effectiveness of the emergency response. Resuscitation 2004;62(3):291-297.
  86. Skogvoll E, Isern E, Sangolt GK, Gisvold SE. In-hospital cardiopulmonary resuscitation. 5 years' incidence and survival according to the Utstein template. Acta Anaesthesiol Scand 1999;43(2):177-184.
  87. Yannopoulos D, Nadkarni VM, McKnite SH, Rao A, Kruger K, Metzger A, et al. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest. Circulation 2005;112(6):803-811.
  88. Monsieurs KG, Nolan JP, Bossaert LL, Greif R, Maconochie IK, Nikolaou NI, et al. Kurzdarstellung: Kapitel 1 der Leitlinien zur Reanimation 2015 des European Resuscitation Council. Notfall + Rettungsmedizin 2015;18(8):655- 747.
  89. Nolan J, Soar J, Zideman D, Biarent D, Bossaert L, Deakin C, et al. Kurz- darstellung -Sektion 1 der Leitlinien zur Reanimation 2010 des European Resuscitation Counsil. Notfall + Rettungsmedizin 2010;13(7):515-522.
  90. Eisenberg MS. Life in the Balance: Emergency Medicine and the Quest to Reverse Sudden Death. Oxford University Press, Oxford New York, 1997.
  91. Böttiger BW, Grabner C, Bauer H, Bode C, Weber T, Motsch J, et al. Long term outcome after out-of-hospital cardiac arrest with physician staffed emergency medical services: the Utstein style applied to a midsized urban/suburban area. Heart 1999;82(6):674-9.
  92. Davis K, Johannigman JA, Johnson RC, Branson RD. Lung Compliance Following Cardiac Arrest. Academic Emergency Medicine 1995;2(10):874- 878.
  93. Wik L, Olsen JA, Persse D, Sterz F, Lozano M, Brouwer MA, et al. Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation 2014;85(6):741-748.
  94. Ornato JP. Measurement of ventilation during cardiopulmonary resuscitation. Crit Care Med 1983;11(2):79-82.
  95. Rubertsson S, Lindgren E, Smekal D, Östlund O, Silfverstolpe J, Lichtveld RA, et al. Mechanical Chest Compressions and Simultaneous Defibrillation vs Conventional Cardiopulmonary Resuscitation in Out-of-Hospital Cardiac Arrest. JAMA 2014;311(1):53-61.
  96. Kramer-Johansen J, Pytte M, Tomlinson AE, Sunde K, Dorph E, Svendsen JV, et al. Mechanical chest compressions with trapezoidal waveform improve haemodynamics during cardiac arrest. Resuscitation 2011; 82(2):213-218.
  97. Kill C, Hahn O, Dietz F, Neuhaus C, Schwarz S, Mahling R, et al. Mechanical Ventilation During Cardiopulmonary Resuscitation With Intermittent Positive-Pressure Ventilation, Bilevel Ventilation, or Chest Compression Synchronized Ventilation in a Pig Model. Crit Care Med 2014;42(2):e89- 95.
  98. Speer T, Dersch W, Kleine B, Neuhaus C, Kill C. Mechanical Ventilation During Resuscitation: How Manual Chest Compressions Affect a Ventilator's Function. Advances in Therapy 2017;34(10):2333-2344.
  99. Perkins GD, Lall R, Quinn T, Deakin CD, Cooke MW, Horton J, et al. Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial. Lancet 2014;385:947-955.
  100. Pietsch U, Lischke V, Knapp J. Mechanische Thoraxkompressionsgeräte in der Luftrettung. Notfall + Rettungsmedizin 2017;20(5):396-402.
  101. Yannopoulos D, Matsuura T, McKnite S, Goodman N, Idris A, Tang W, et al. No assisted ventilation cardiopulmonary resuscitation and 24-hour neurological outcomes in a porcine model of cardiac arrest. Crit Care Med 2010;38(1):254-260.
  102. Hill JD. Observations of some of the dangers of chloroform in surgical practice and a successful mode of treatment. Br J Dent Sci 1868;11:355- 358.
  103. Fischer M, Fischer NJ, Schüttler J. One-year survival after out-of-hospital cardiac arrest in Bonn city: Outcome report according to the 'Utstein style'. Resuscitation 1997;33(3):233-243.
  104. Gräsner JT, Geldner G, Werner C, Fischer M, Bohn A, Scholz KH, et al. Optimierung der Reanimationsversorgung in Deutschland. Notfall + Rettungsmedizin 2014;17(4):314-316.
  105. Lurie KG, Mulligan KA, McKnite S, Detloff B, Lindstrom P, Lindner KH. Optimizing standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Chest 1998;113(4):1084-1090.
  106. Estner HL, Günzel C, Ndrepepa G, William F, Blaumeiser D, Rupprecht B, et al. Outcome after out-of-hospital cardiac arrest in a physician-staffed emergency medical system according to the Utstein style. Am Heart J 2007; 153(5):792-799.
  107. Kentsch M, Schlichting H, Mathes N, Rodemerk U, Ittel TH. Out-of-hospital cardiac arrest in North-East Germany: Increased resuscitation efforts and improved survival. Resuscitation 2000;43(3):177-183.
  108. Dorph E, Wik L, Strømme TA, Eriksen M, Steen PA. Oxygen delivery and return of spontaneous circulation with ventilation: Compression ratio 2:30 versus chest compressions only CPR in pigs. Resuscitation 2004;60(3):309- 318.
  109. Nolan JP, Hazinski MF, Aickin R, Bhanji F, Billi JE, Callaway CW, et al. Part 1: Executive summary 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2015;95:e1-e31.
  110. Winkler BE, Muellenbach RM, Wurmb T, Struck MF, Roewer N, Kranke P. Passive continuous positive airway pressure ventilation during cardio- pulmonary resuscitation: a randomized cross-over manikin simulation study. J Clin Monit Comput 2017;31(1):93-101.
  111. Bobrow BJ, Ewy GA, Clark L, Chikani V, Berg RA, Sanders AB, et al. Passive oxygen insufflation is superior to bag-valve-mask ventilation for witnessed ventricular fibrillation out-of-hospital cardiac arrest. Ann Emerg Med 2009;54(5):656-662.e1.
  112. Theres H, Binkau J, Laule M, Heinze R, Hundertmark J, Blobner M, et al. Phase-related changes in right ventricular cardiac output under volume- controlled mechanical ventilation with positive end-expiratory pressure. Crit Care Med 1999;27(5):953-958.
  113. Redberg RF, Tucker KJ, Cohen TJ, Dutton JP, Callaham ML, Schiller NB. Physiology of blood flow during cardiopulmonary resuscitation. A transesophageal echocardiographic study. Circulation 1993;88(2):534-542.
  114. Müßig B, Siebers C, Huppertz T, Kanz K. Qualität der initialen Reanimationsmaßnahmen am Phantom durch Rettungsassistenten und Rettungssanitäter. Notfall + Rettungsmedizin 2013;16(1):33-37.
  115. Abella BS, Alvarado JP, Myklebust H, Barry A, Hearn NO, Hoek TLV, et al. Quality of Cardiopulmonary Resuscitation. JAMA 2005;293(3):305-310.
  116. Yannopoulos D, Sigurdsson G, McKnite SH, Benditt D, Lurie KG. Reducing ventilation frequency combined with an inspiratory impedance device improves CPR efficiency in swine model of cardiac arrest. Resuscitation 2004;61(1):75-82.
  117. Idris AH, Guffey D, Aufderheide TP, Brown S, Morrison LJ, Nichols P, et al. Relationship Between Chest Compression Rates and Outcomes From Cardiac Arrest. Circulation 2012;125(24):3004-3012.
  118. Dersch W, Hoselmann P, Neuhaus C, Palm U, Bösl E, Wallot P, et al. Resuscitation with mechanical ventilation: The effects of Chest Compression Synchronized Ventilation (CCSV) or Intermitted Positive Pressure Ventilation (IPPV) on lung injury in a pig model. Resuscitation 2013;84S:15.
  119. Schumann H. Rettungsdienst am Limit: Gesundheit von Einsatzkräften im Rettungsdienst (GERD c ) -Ein Vergleich zwischen der Berufsfeuerwehr und den Hilfsorganisationen. Diplomica Verlag, Hamburg, 2012.
  120. Yang L, Weil MH, Noc M, Tang W, Turner T, Gazmuri RJ. Spontaneous gasping increases the ability to resuscitate durign experimental cardiopulmonary resuscitation. Crit Care Med 1994;22(5):879-883.
  121. No author listed. Standards for cardiopulmonary resuscitation (CPR) and emergency medicine care (ECC). 3. Advanced Life Support. JAMA 1974; 227(18):852-860.
  122. No author listed. Standards for cardiopulmonary resuscitation (CPR) and emergency medicine care (ECC). 3. Advanced Life Support. JAMA 1980; 244(5):453-509.
  123. No author listed. Standards for cardiopulmonary resuscitation (CPR) and emergency medicine care (ECC). National Academy of Sciences -National Research Counsil. JAMA 1986;255(21):2905-2989.
  124. Cohen, T. Statistical power analysis for the behavioral sciences. 2nd revised edition, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1988.
  125. Bortz J, Schuster C. Statistik für Human-und Sozialwissenschaftler. Springer-Verlag, Berlin Heidelberg, 2010.
  126. Yoo IS, Ryu S. The Adequacy of a Conventional Mechanical Ventilator as a Ventilation Method during Cardiopulmonary Resuscitation: A Manikin Study. JKCCM 2015;29(4):89-94.
  127. Bossaert LL, Chamberlain D. The European Resuscitation Council: Its history and development. Resuscitation 2013;84:1291-1294.
  128. McInnes AD, Sutton RM, Orioles A, Nishisaki A, Niles D, Abella BS, et al. The first quantitative report of ventilation rate during in-hospital resuscitation of older children and adolescents. Resuscitation 2011;
  129. Neukamm J, Gräsner JT, Schewe JC, Breil M, Bahr J, Heister U, et al. The impact of response time reliability on CPR incidence and resuscitation success: a benchmark study from the German Resuscitation. Crit Care Med 2011;282(15):R282.
  130. Stiell I, Hébert P, Wells G, Laupacis A, Vandemheen K, Dreyer J, et al. The ontario trial of active compression-decompression cardiopulmonary resuscitation for in-hospital and prehospital cardiac arrest. JAMA 1996; 275(18):1417-1423.
  131. Chalkias A, Xanthos T. Timing positive-pressure ventilation during chest compression: the key to improving the thoracic pump? Eur Hear J Acute Cardiovasc Care 2013;4(1):24-27.
  132. Frascone RJ, Wayne MA, Swor RA, Mahoney BD, Domeier RM, Olinger ML, et al. Treatment of non-traumatic out-of-hospital cardiac arrest with active compression decompression cardiopulmonary resuscitation plus an impedance threshold device. Resuscitation 2013;84(9):1214-1222.
  133. Lurie KG, Zielinski T, McKnite S, Aufderheide T, Voelckel W. Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Circulation 2002;105(1):124-129.
  134. Pantazopoulos IN, Xanthos TT, Vlachos I, Troupis G, Kotsiomitis E, Johnson E, et al. Use of the impedance threshold device improves survival rate and neurological outcome in a swine model of asphyxial cardiac arrest. Crit Care Med 2012;40(3):861-868.
  135. Version 14.0, Microsoft Corporation, Redmond, Washington, USA, 2010.
  136. Dietz F. Vorrichtung und Verfahren zur Generierung eines Atemgashubes während der Herz-Druckmassage. Europäische Patentanmeldung, Anmelde- nummer: 11000038.7, Anmeldetag: 05.01.2011.
  137. Stiell I, Brown S, Christenson J, Cheskes S, Nichol G, Powell J, et al. What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? Crit Care Med 2012;40(4):1192-1198.
  138. DIN EN 794-3:2009-12. Lungenbeatmungsgeräte -Teil 3: Besondere Anforderungen an Notfall-und Transportbeatmungsgeräte, Deutsche Fassung EN 794-3:1998+A2:2009. URL: http://www.beuth.de/de/norm/ din-en-794-3/120991369. [aufgerufen am: 28.09.2017, 11:06 Uhr].
  139. GS Elektromedizinische Geräte G Stemple GmbH. Produktinformation Corpatch CPR (Version 1.1, 2013). URL: https://www.anandic.com/ bausteine.net/f/11082/corpatchcpr-Anandic.pdf?fd=2. [aufgerufen am 28.09.2017, 15:38 Uhr].
  140. Statistisches Bundesamt (Destatis). Gesundheit -Todesursachen in Deutschland 2015, Fachserie 12 Reihe 4. Wiesbaden, 2017. URL: https://www.destatis.de/DE/Publikationen/Thematisch/


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten