Publikationsserver der Universitätsbibliothek Marburg

Titel:Intracellular rols7 mRNA localization and the importance of Barren for mitosis in the embryonic myogenesis of Drosophila melanogaster
Autor:Jacobs, Matthias P. F.
Weitere Beteiligte: Renkawitz-Pohl, Renate (Prof. Dr.)
URN: urn:nbn:de:hebis:04-z2018-02147
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Intrazelluläre rols7-mRNA-Lokalisierung und die Relevanz von Barren für die Mitose in der embryonalen Myogenese von Drosophila melanogaster


Myogenese, Muskelentwicklung, rols, embryonic development, barr, chromosomal instability, Embryonalentwicklung, barren, mRNA localization, Mitose, Drosophila melanogaster, myoblast fusion, mRNA-Lokalisation, Cohesin, Myobalstenfusion, myogenesis, Condensin, Taufliege, rolling pebbles, genomic instability

The body wall musculature of the D. melanogaster larva is a highly ordered assembly of striated myotubes that are formed by fusion of myoblasts, much like the skeletal muscle fibres of vertebrates. In this study, the embryonic development of this musculature is used as a genetic model system for myogenesis, muscle regeneration and related processes. Rols7 is a crucial protein in the signal transduction chain that controls the Actin filament branching necessary for myoblast fusion. In somatic muscle founder cells, the rols7 mRNA shows intracellular localization into one or more patches near the cell surface. This thesis demonstrates that the rols7 transcript’s 3’ untranslated region is necessary for its localization. A reporter mRNA with this trailer region as well as the 5’ untranslated region gets intracellularly localized in a way seemingly identical to the wild type pattern, even in the absence of native rols transcripts. The rols7 mRNA is shown to be intracellularly localized in the circular and longitudinal visceral muscle founder cells as well; in the latter it forms spots close to the tips of the spindle-shaped cells, near the expected sites of cell-cell fusion. At least for this latter cell type it can be suspected that rols7 mRNA localisation facilitates protein localisation and eventually myoblast fusion by preforming the Rols7 protein’s distribution pattern. In search of previously unknown factors involved in myogenesis, the muscle phenotype of the EMS-induced mutant line E831 is analyzed. As the cause for the disturbed arrangement of the embryonic body wall musculature a nonsense mutation of the Condensin subunit barren is identified. Cap-G, another Condensin subunit, is found to show a phenotype very similar to that of barren. While in a barren mutant both muscle founder cells and fusion competent myoblasts seem to get specified, muscle identity genes are expressed irregularly in a manner that corresponds to the perturbation of the muscle pattern. In every cell, the Condensin complex fulfills a variety of essential functions. To help clarify whether the muscle phenotype is connected to Condensin’s regulatory role during interphase or its function in chromosome segregation during mitosis, the time point at which Barren is needed in the musculature has to be identified. To this end, the Gal4-UAS system is used to express a barren rescue construct. Gal4 drivers are found to rescue the phenotype only if they express Barren considerably before the final cell division that gives rise to the muscle founder cells. This finding suggests that the muscle phenotype is caused by a mitotic defect. The mechanism behind the loss of muscle identity appears to be a phenomenon related to the genomic instability of cancer cell lines.

Bibliographie / References

  1. N. Vargesson. Thalidomide-induced teratogenesis: history and mechanisms. Birth defects research. Part C, Embryo today : reviews, 105(2):140-56, 2015. doi: 10.1002/bdrc. 21096. ↑p. 37
  2. S. Önel and R. Renkawitz-Pohl. FuRMAS: triggering myoblast fusion in Drosophila. Devel- opmental dynamics : an official publication of the American Association of Anatomists, 238(6):1513-25, 2009. doi: 10.1002/dvdy.21961. ↑p. 15
  3. C. Metz. Chromosome studies on the Diptera. II. The paired association of chromosomes in the Diptera, and its significance. Journal of Experimental Zoology, 21(2):213-279, 1916. doi: 10.1002/jez.1400210204. ↑p. 27
  4. G. Thio, R. Ray, G. Barcelo, and T. Schüpbach. Localization of gurken RNA in Drosophila oogenesis requires elements in the 5' and 3' regions of the transcript. Developmental biology, 221(2):435-46, 2000. doi: 10.1006/dbio.2000.9690. ↑p. 17
  5. R. Oliveira, S. Heidmann, and C. Sunkel. Condensin I binds chromatin early in prophase and displays a highly dynamic association with Drosophila mitotic chromosomes. Chromo- soma, 116(3):259-74, 2007. doi: 10.1007/s00412-007-0097-5. ↑p. 55, 96
  6. Z. Misulovin, Y. Schwartz, X. Li, T. Kahn, M. Gause, S. MacArthur, J. Fay, M. Eisen, V. Pir- rotta, M. Biggin, and D. Dorsett. Association of cohesin and Nipped-B with transcrip- tionally active regions of the Drosophila melanogaster genome. Chromosoma, 117(1): 89-102, 2008. doi: 10.1007/s00412-007-0129-1. ↑p. 35
  7. D. Dorsett. Cohesin, gene expression and development: Lessons from Drosophila. Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology, 17(2):185-200, 2009. doi: 10.1007/s10577-009-9022-5. ↑p. 35, 88
  8. T. Maqbool and K. Jagla. Genetic control of muscle development: learning from Drosophila. Journal of muscle research and cell motility, 28(7-8):397-407, 2007. doi: 10.1007/ s10974-008-9133-1. ↑p. 10
  9. K. Noma, H. Cam, R. Maraia, and S. Grewal. A role for TFIIIC transcription factor complex in genome organization. Cell, 125(5):859-72, 2006. doi: 10.1016/j.cell.2006.04.028. ↑p. 27
  10. S. Kueng, B. Hegemann, B. Peters, J. Lipp, A. Schleiffer, K. Mechtler, and J. Peters. Wapl controls the dynamic association of cohesin with chromatin. Cell, 127(5):955-67, 2006. doi: 10.1016/j.cell.2006.09.040. ↑p. 32, 34
  11. E. Lécuyer, H. Yoshida, N. Parthasarathy, C. Alm, T. Babak, T. Cerovina, T. Hughes, P. Tomancak, and H. Krause. Global analysis of mRNA localization reveals a promi- nent role in organizing cellular architecture and function. Cell, 131(1):174-87, 2007. doi: 10.1016/j.cell.2007.08.003. ↑p. 105
  12. T. Nishiyama, R. Ladurner, J. Schmitz, E. Kreidl, A. Schleiffer, V. Bhaskara, M. Bando, K. Shirahige, A. Hyman, K. Mechtler, and J. Peters. Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell, 143(5):737-49, 2010. doi: 10.1016/j.cell.2010.10. 031. ↑p. 32, 34
  13. K. Chan, M. Roig, B. Hu, F. Beckouët, J. Metson, and K. Nasmyth. Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell, 150(5):961-74, 2012. doi: 10.1016/j.cell.2012.07.028. ↑p. 32
  14. W. Chao, Y. Murayama, S. MuA+-oz, A. Costa, F. Uhlmann, and M. Singleton. Structural Studies Reveal the Functional Modularity of the Scc2-Scc4 Cohesin Loader. Cell reports, 12(5):719-25, 2015. doi: 10.1016/j.celrep.2015.06.071. ↑p. 18
  15. T. Strick, T. Kawaguchi, and T. Hirano. Real-time detection of single-molecule DNA compaction by condensin I. Current biology : CB, 14(10):874-80, 2004. doi: 10.1016/j.cub.2004.04.038. ↑p. 23
  16. A. Lammens, A. Schele, and K. Hopfner. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Current biology : CB, 14(19):1778-82, 2004. doi: 10.1016/j.cub.2004.09.044. ↑p. 34
  17. T. Hirano. Condensins: organizing and segregating the genome. Current biology : CB, 15(7): R265-75, 2005. doi: 10.1016/j.cub.2005.03.037. ↑p. 18, 23
  18. D. Gerlich, T. Hirota, B. Koch, J. Peters, and J. Ellenberg. Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Current biology : CB, 16(4): 333-44, 2006. doi: 10.1016/j.cub.2005.12.040. ↑p. 24, 35
  19. E. Watrin, A. Schleiffer, K. Tanaka, F. Eisenhaber, K. Nasmyth, and J. Peters. Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Current biology : CB, 16(9):863-74, 2006. doi: 10.1016/j.cub.2006.03.049. ↑p. 18, 33
  20. P. Arumugam, T. Nishino, C. Haering, S. Gruber, and K. Nasmyth. Cohesin's ATPase activity is stimulated by the C-terminal Winged-Helix domain of its kleisin subunit. Current biology : CB, 16(20):1998-2008, 2006. doi: 10.1016/j.cub.2006.09.002. ↑p. 34
  21. R. Gandhi, P. Gillespie, and T. Hirano. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Current biology : CB, 16(24):2406-17, 2006. doi: 10.1016/j.cub.2006.10.061. ↑p. 32, 34
  22. J. Schmitz, E. Watrin, P. Lénárt, K. Mechtler, and J. Peters. Sororin is required for stable binding of cohesin to chromatin and for sister chromatid cohesion in interphase. Current biology : CB, 17(7):630-6, 2007. doi: 10.1016/j.cub.2007.02.029. ↑p. 32
  23. C. D'Ambrosio, G. Kelly, K. Shirahige, and F. Uhlmann. Condensin-dependent rDNA decate- nation introduces a temporal pattern to chromosome segregation. Current biology : CB, 18(14):1084-9, 2008a. doi: 10.1016/j.cub.2008.06.058. ↑p. 25
  24. E. Castellanos, P. Dominguez, and C. Gonzalez. Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Current biology : CB, 18(16):1209-14, 2008. doi: 10.1016/j.cub.2008.07.029. ↑p. 26, 111, 112
  25. T. Sutani, T. Kawaguchi, R. Kanno, T. Itoh, and K. Shirahige. Budding yeast Wpl1(Rad61)- Pds5 complex counteracts sister chromatid cohesion-establishing reaction. Current biol- ogy : CB, 19(6):492-7, 2009. doi: 10.1016/j.cub.2009.01.062. ↑p. 34
  26. A. Pauli, J. van Bemmel, R. Oliveira, T. Itoh, K. Shirahige, B. van Steensel, and K. Nasmyth. A direct role for cohesin in gene regulation and ecdysone response in Drosophila salivary glands. Current biology : CB, 20(20):1787-98, 2010. doi: 10.1016/j.cub.2010.09.006. ↑p. 36, 88
  27. J. Wells, T. Gligoris, K. Nasmyth, and J. Marsh. Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Current biology : CB, 27(1):R17-R18, 2017. doi: 10.1016/j.cub.2016.11.050. ↑p. 18
  28. V. Van De Bor, E. Hartswood, C. Jones, D. Finnegan, and I. Davis. gurken and the I factor retrotransposon RNAs share common localization signals and machinery. Developmental cell, 9(1):51-62, 2005. doi: 10.1016/j.devcel.2005.04.012. ↑p. 17
  29. R. Massarwa, S. Carmon, B. Shilo, and E. Schejter. WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila. Developmental cell, 12(4): 557-69, 2007. doi: 10.1016/j.devcel.2007.01.016. ↑p. 14
  30. S. Kim, K. Shilagardi, S. Zhang, S. Hong, K. Sens, J. Bo, G. Gonzalez, and E. Chen. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Developmental cell, 12(4):571-86, 2007. doi: 10.1016/j.devcel. 2007.02.019. ↑p. 14
  31. O. Schuldiner, D. Berdnik, J. Levy, J. Wu, D. Luginbuhl, A. Gontang, and L. Luo. piggyBac-based mosaic screen identifies a postmitotic function for cohesin in regu- lating developmental axon pruning. Developmental cell, 14(2):227-38, 2008. doi: 10.1016/j.devcel.2007.11.001. ↑p. 36
  32. A. Pauli, F. Althoff, R. Oliveira, S. Heidmann, O. Schuldiner, C. Lehner, B. Dickson, and K. Nasmyth. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Developmental cell, 14(2):239-51, 2008. doi: 10.1016/j.devcel. 2007.12.009. ↑p. 35, 88, 111
  33. S. Rankin, N. Ayad, and M. Kirschner. Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Molecular cell, 18(2):185-200, 2005. doi: 10.1016/j.molcel.2005.03.017. ↑p. 32
  34. J. Zhang, X. Shi, Y. Li, B. Kim, J. Jia, Z. Huang, T. Yang, X. Fu, S. Jung, Y. Wang, P. Zhang, S. Kim, X. Pan, and J. Qin. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Molecular cell, 31(1):143-51, 2008. doi: 10.1016/j.molcel.2008.06.006. ↑p. 34
  35. K. Feng, M. Palfreyman, M. Häsemeyer, A. Talsma, and B. Dickson. Ascending SAG neurons control sexual receptivity of Drosophila females. Neuron, 83(1):135-48, 2014. doi: 10.1016/j.neuron.2014.05.017. ↑p. 65
  36. G. Schäfer, S. Weber, A. Holz, S. Bogdan, S. Schumacher, A. Müller, R. Renkawitz-Pohl, and S. Önel. The Wiskott-Aldrich syndrome protein (WASP) is essential for myoblast fusion in Drosophila. Developmental biology, 304(2):664-74, 2007. doi: 10.1016/j.ydbio.2007. 01.015. ↑p. 14, 83
  37. B. Estrada, A. Maeland, S. Gisselbrecht, J. Bloor, N. Brown, and A. Michelson. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion. Developmental biology, 307(2):328-39, 2007. doi: 10.1016/j.ydbio. 2007.04.045. ↑p. 16
  38. K. Beckett and M. Baylies. 3D analysis of founder cell and fusion competent myoblast ar- rangements outlines a new model of myoblast fusion. Developmental biology, 309(1): 113-25, 2007. doi: 10.1016/j.ydbio.2007.06.024. ↑p. 11
  39. C. Dottermusch-Heidel, V. Groth, L. Beck, and S. Önel. The Arf-GEF Schizo/Loner regu- lates N-cadherin to induce fusion competence of Drosophila myoblasts. Developmental biology, 368(1):18-27, 2012. doi: 10.1016/j.ydbio.2012.04.031. ↑p. 14
  40. X. Wang and W. Dai. Shugoshin, a guardian for sister chromatid segregation. Experimental cell research, 310(1):1-9, 2005. doi: 10.1016/j.yexcr.2005.07.018. ↑p. 32
  41. V. Tixier, L. Bataillé, and K. Jagla. Diversification of muscle types: recent insights from Drosophila. Experimental cell research, 316(18):3019-27, 2010. doi: 10.1016/j.yexcr. 2010.07.013. ↑p. 11, 13
  42. P. Macdonald and G. Struhl. cis-acting sequences responsible for anterior localization of bicoid mRNA in Drosophila embryos. Nature, 336(6199):595-8, 1988. doi: 10.1038/336595a0. ↑p. 17
  43. J. Broadus, S. Fuerstenberg, and C. Doe. Staufen-dependent localization of prospero mRNA contributes to neuroblast daughter-cell fate. Nature, 391(6669):792-5, 1998. doi: 10. 1038/35861. ↑p. 104
  44. T. Sutani and M. Yanagida. DNA renaturation activity of the SMC complex implicated in chromosome condensation. Nature, 388(6644):798-801, 1997. doi: 10.1038/42062. ↑p. 23
  45. J. Rawlings, M. Gatzka, P. Thomas, and J. Ihle. Chromatin condensation via the condensin II complex is required for peripheral T-cell quiescence. The EMBO journal, 30(2):263-76, 2011. doi: 10.1038/emboj.2010.314. ↑p. 31
  46. C. Eichinger, A. Kurze, R. Oliveira, and K. Nasmyth. Disengaging the Smc3/kleisin inter- face releases cohesin from Drosophila chromosomes during interphase and mitosis. The EMBO journal, 32(5):656-65, 2013. doi: 10.1038/emboj.2012.346. ↑p. 32
  47. controls Igk repertoire and B-cell development, and localizes with condensin on the Igk locus. The EMBO journal, 32(8):1168-82, 2013. doi: 10.1038/emboj.2013.66. ↑p. 30
  48. J. Buheitel and O. Stemmann. Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate. The EMBO journal, 32(5):666- 76, 2013. doi: 10.1038/emboj.2013.7. ↑p. 32, 34
  49. O. Hachet and A. Ephrussi. Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature, 428(6986):959-63, 2004. doi: 10.1038/nature02521. ↑p. 82
  50. A. Lengronne, Y. Katou, S. Mori, S. Yokobayashi, G. Kelly, T. Itoh, Y. Watanabe, K. Shirahige, and F. Uhlmann. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature, 430(6999):573-8, 2004. doi: 10.1038/nature02742. ↑p. 35
  51. T. Kitajima, T. Sakuno, K. Ishiguro, S. Iemura, T. Natsume, S. Kawashima, and Y. Watanabe. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature, 441 (7089):46-52, 2006. doi: 10.1038/nature04663. ↑p. 32
  52. G. Dietzl, D. Chen, F. Schnorrer, K. Su, Y. Barinova, M. Fellner, B. Gasser, K. Kinsey, S. Oppel, S. Scheiblauer, A. Couto, V. Marra, K. Keleman, and B. Dickson. A genome- wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature, 448 (7150):151-6, 2007. doi: 10.1038/nature05954. ↑p. 127
  53. C. Haering, A. Farcas, P. Arumugam, J. Metson, and K. Nasmyth. The cohesin ring con- catenates sister DNA molecules. Nature, 454(7202):297-301, 2008. doi: 10.1038/ nature07098. ↑p. 32
  54. M. Lawrence, P. Stojanov, C. Mermel, J. Robinson, L. Garraway, T. Golub, M. Meyerson, S. Gabriel, E. Lander, and G. Getz. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505(7484):495-501, 2014. doi: 10.1038/nature12912. ↑p. 38
  55. H. Xing, N. Vanderford, and K. Sarge. The TBP-PP2A mitotic complex bookmarks genes by preventing condensin action. Nature cell biology, 10(11):1318-23, 2008. doi: 10.1038/ ncb1790. ↑p. 30, 107
  56. J. Kim, T. Zhang, N. Wong, N. Davidson, J. Maksimovic, A. Oshlack, W. Earnshaw, P. Kalitsis, and D. Hudson. Condensin I associates with structural and gene regula- tory regions in vertebrate chromosomes. Nature communications, 4:2537, 2013. doi: 10.1038/ncomms3537. ↑p. 30
  57. D. Gogendeau, K. Siudeja, D. Gambarotto, C. Pennetier, A. Bardin, and R. Basto. Aneuploidy causes premature differentiation of neural and intestinal stem cells. Nature communica- tions, 6:8894, 2015. doi: 10.1038/ncomms9894. ↑p. 26
  58. V. Sollars, X. Lu, L. Xiao, X. Wang, M. Garfinkel, and D. Ruden. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nature genetics, 33(1):70-4, 2003. doi: 10.1038/ng1067. ↑p. 35
  59. E. Tonkin, T. Wang, S. Lisgo, M. Bamshad, and T. Strachan. NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nature genetics, 36(6):636-41, 2004. doi: 10.1038/ng1363. ↑p. 37
  60. A. Musio, A. Selicorni, M. Focarelli, C. Gervasini, D. Milani, S. Russo, P. Vezzoni, and L. Lar- izza. X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nature genetics, 38(5):528-30, 2006. doi: 10.1038/ng1779. ↑p. 37
  61. B. Srinivas, J. Woo, W. Leong, and S. Roy. A conserved molecular pathway mediates myoblast fusion in insects and vertebrates. Nature genetics, 39(6):781-6, 2007. doi: 10.1038/ ng2055. ↑p. 10
  62. A. Losada. Cohesin in cancer: chromosome segregation and beyond. Nature reviews. Cancer, 14(6):389-93, 2014. doi: 10.1038/nrc3743. ↑p. 38
  63. S. Cuylen, J. Metz, and C. Haering. Condensin structures chromosomal DNA through topological links. Nature structural & molecular biology, 18(8):894-901, 2011. doi: 10.1038/nsmb.2087. ↑p. 21
  64. K. Hara, G. Zheng, Q. Qu, H. Liu, Z. Ouyang, Z. Chen, D. Tomchick, and H. Yu. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nature structural & molecular biology, 21(10):864-70, 2014. doi: 10.1038/nsmb.2880. ↑p. 32
  65. A. Dekanty, L. Barrio, and M. Milán. Contributions of DNA repair, cell cycle checkpoints and cell death to suppressing the DNA damage-induced tumorigenic behavior of Drosophila epithelial cells. Oncogene, 34(8):978-85, 2015. doi: 10.1038/onc.2014.42. ↑p. 26
  66. L. Burke, R. Zhang, M. Bartkuhn, V. Tiwari, G. Tavoosidana, S. Kurukuti, C. Weth, J. Leers, N. Galjart, R. Ohlsson, and R. Renkawitz. CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin. The EMBO journal, 24 (18):3291-300, 2005. doi: 10.1038/sj.emboj.7600793. ↑p. 36
  67. J. Mc Intyre, E. Muller, S. Weitzer, B. Snydsman, T. Davis, and F. Uhlmann. In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae. The EMBO journal, 26(16):3783-93, 2007. doi: 10.1038/sj.emboj.7601793. ↑p. 32, 33
  68. E. Rubio, D. Reiss, P. Welcsh, C. Disteche, G. Filippova, N. Baliga, R. Aebersold, J. Ranish, and A. Krumm. CTCF physically links cohesin to chromatin. Proceedings of the National Academy of Sciences of the United States of America, 105(24):8309-14, 2008. doi: 10.1073/pnas.0801273105. ↑p. 36
  69. A. Lafont, J. Song, and S. Rankin. Sororin cooperates with the acetyltransferase Eco2 to ensure DNA replication-dependent sister chromatid cohesion. Proceedings of the National Academy of Sciences of the United States of America, 107(47):20364-9, 2010. doi: 10.1073/pnas.1011069107. ↑p. 32, 34
  70. K. Sullivan, K. Scott, C. Zuker, and G. Rubin. The ryanodine receptor is essential for larval de- velopment in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the United States of America, 97(11):5942-7, 2000. doi: 10.1073/pnas.110145997. ↑p. 133
  71. A. Dekanty, L. Barrio, M. Muzzopappa, H. Auer, and M. Milán. Aneuploidy-induced delam- inating cells drive tumorigenesis in Drosophila epithelia. Proceedings of the National Academy of Sciences of the United States of America, 109(50):20549-54, 2012. doi: 10.1073/pnas.1206675109. ↑p. 26, 111, 112
  72. J. Kim, C. Lilliehook, A. Dudak, J. Prox, P. Saftig, H. Federoff, and S. Lim. Activity- dependent alpha-cleavage of nectin-1 is mediated by a disintegrin and metalloprotease 10 (ADAM10). The Journal of biological chemistry, 285(30):22919-26, 2010. doi: 10.1074/jbc.M110.126649. ↑p. 127, 131
  73. D. Anderson, A. Losada, H. Erickson, and T. Hirano. Condensin and cohesin display different arm conformations with characteristic hinge angles. The Journal of cell biology, 156(3): 419-24, 2002. doi: 10.1083/jcb.200111002. ↑p. 18, 21, 22, 31, 32, 33
  74. O. Cuvier and T. Hirano. A role of topoisomerase II in linking DNA replication to chromosome condensation. The Journal of cell biology, 160(5):645-55, 2003. doi: 10.1083/jcb. 200209023. ↑p. 24, 25
  75. S. Menon, Z. Osman, K. Chenchill, and W. Chia. A positive feedback loop between Dumb- founded and Rolling pebbles leads to myotube enlargement in Drosophila. The Journal of cell biology, 169(6):909-20, 2005. doi: 10.1083/jcb.200501126. ↑p. 104
  76. K. Sens, S. Zhang, P. Jin, R. Duan, G. Zhang, F. Luo, L. Parachini, and E. Chen. An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. The Journal of cell biology, 191(5):1013-27, 2010. doi: 10.1083/jcb.201006006. ↑p. 15, 16
  77. D. Yamashita, K. Shintomi, T. Ono, I. Gavvovidis, D. Schindler, H. Neitzel, M. Trimborn, and T. Hirano. MCPH1 regulates chromosome condensation and shaping as a composite modulator of condensin II. The Journal of cell biology, 194(6):841-54, 2011. doi: 10.1083/jcb.201106141. ↑p. 31
  78. N. Dhanyasi, D. Segal, E. Shimoni, V. Shinder, B. Shilo, K. VijayRaghavan, and E. Schejter. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles. The Journal of cell biology, 211(1):191-203, 2015. doi: 10.1083/jcb. 201503005. ↑p. 15, 16
  79. B. Schüle, A. Oviedo, K. Johnston, S. Pai, and U. Francke. Inactivating mutations in ESCO2 cause SC phocomelia and Roberts syndrome: no phenotype-genotype correlation. Amer- ican journal of human genetics, 77(6):1117-28, 2005. doi: 10.1086/498695. ↑p. 37
  80. T. Ono, Y. Fang, D. Spector, and T. Hirano. Spatial and temporal regulation of Condensins I and II in mitotic chromosome assembly in human cells. Molecular biology of the cell, 15 (7):3296-308, 2004. doi: 10.1091/mbc.E04-03-0242. ↑p. 24
  81. D. Ferrandon, I. Koch, E. Westhof, and C. Nüsslein-Volhard. RNA-RNA interaction is required for the formation of specific bicoid mRNA 3' UTR-STAUFEN ribonucleoprotein particles. The EMBO journal, 16(7):1751-8, 1997. doi: 10.1093/emboj/16.7.1751. ↑p. 82
  82. S. Bullock, D. Zicha, and D. Ish-Horowicz. The Drosophila hairy RNA localization signal modulates the kinetics of cytoplasmic mRNA transport. The EMBO journal, 22(10): 2484-94, 2003. doi: 10.1093/emboj/cdg230. ↑p. 17, 82
  83. A. Sakai, K. Hizume, T. Sutani, K. Takeyasu, and M. Yanagida. Condensin but not co- hesin SMC heterodimer induces DNA reannealing through protein-protein assembly. The EMBO journal, 22(11):2764-75, 2003. doi: 10.1093/emboj/cdg247. ↑p. 21, 23, 33
  84. K. Schuster, B. Leeke, M. Meier, Y. Wang, T. Newman, S. Burgess, and J. Horsfield. A neural crest origin for cohesinopathy heart defects. Human molecular genetics, 24(24):7005-16, 2015. doi: 10.1093/hmg/ddv402. ↑p. 36
  85. W. Kibbe. OligoCalc: an online oligonucleotide properties calculator. Nucleic acids research, 35:W43-6, 2007. doi: 10.1093/nar/gkm234. ↑p. 51
  86. O. Orgil, H. Mor, A. Matityahu, and I. Onn. Identification of a region in the coiled-coil domain of Smc3 that is essential for cohesin activity. Nucleic acids research, 44(13):6309-17, 2016. doi: 10.1093/nar/gkw539. ↑p. 38
  87. R. Haeusler, M. Pratt-Hyatt, P. Good, T. Gipson, and D. Engelke. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes & development, 22(16):2204-14, 2008. doi: 10.1101/gad.1675908. ↑p. 27
  88. K. Shintomi and T. Hirano. Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1. Genes & development, 23(18):2224-36, 2009. doi: 10.1101/gad.1844309. ↑p. 32, 34
  89. F. Bantignies, C. Grimaud, S. Lavrov, M. Gabut, and G. Cavalli. Inheritance of Polycomb- dependent chromosomal interactions in Drosophila. Genes & development, 17(19):2406- 20, 2003. doi: 10.1101/gad.269503. ↑p. 29, 106
  90. K. Hagstrom, V. Holmes, N. Cozzarelli, and B. Meyer. C. elegans condensin promotes mi- totic chromosome architecture, centromere organization, and sister chromatid segre- gation during mitosis and meiosis. Genes & development, 16(6):729-42, 2002. doi: 10.1101/gad.968302. ↑p. 24, 25
  91. D. Schmidt, P. Schwalie, C. Ross-Innes, A. Hurtado, G. Brown, J. Carroll, P. Flicek, and D. Odom. A CTCF-independent role for cohesin in tissue-specific transcription. Genome research, 20(5):578-88, 2010. doi: 10.1101/gr.100479.109. ↑p. 36
  92. M. Ham, T. Takakuwa, N. Rahadiani, K. Tresnasari, H. Nakajima, and K. Aozasa. Con- densin mutations and abnormal chromosomal structures in pyothorax-associated lym- phoma. Cancer science, 98(7):1041-7, 2007. doi: 10.1111/j.1349-7006.2007.00500.x. ↑p. 31
  93. H. Xing, D. Wilkerson, C. Mayhew, E. Lubert, H. Skaggs, M. Goodson, Y. Hong, O. Park- Sarge, and K. Sarge. Mechanism of hsp70i gene bookmarking. Science (New York, N.Y.), 307(5708):421-3, 2005. doi: 10.1126/science.1106478. ↑p. 30
  94. T. Hartl, H. Smith, and G. Bosco. Chromosome alignment and transvection are antagonized by condensin II. Science (New York, N.Y.), 322(5906):1384-7, 2008. doi: 10.1126/ science.1164216. ↑p. 28, 29
  95. K. Shilagardi, S. Li, F. Luo, F. Marikar, R. Duan, P. Jin, J. Kim, K. Murnen, and E. Chen. Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science (New York, N.Y.), 340(6130):359-63, 2013. doi: 10. 1126/science.1234781. ↑p. 16
  96. M. Gause, Z. Misulovin, A. Bilyeu, and D. Dorsett. Dosage-sensitive regulation of cohesin chromosome binding and dynamics by Nipped-B, Pds5, and Wapl. Molecular and cellular biology, 30(20):4940-51, 2010. doi: 10.1128/MCB.00642-10. ↑p. 35
  97. B. Tomson, D. D'Amours, B. Adamson, L. Aragon, and A. Amon. Ribosomal DNA transcription-dependent processes interfere with chromosome segregation. Molecular and cellular biology, 26(16):6239-47, 2006. doi: 10.1128/MCB.00693-06. ↑p. 25
  98. J. Lee and T. Orr-Weaver. The molecular basis of sister-chromatid cohesion. Annual review of cell and developmental biology, 17:753-77, 2001. doi: 10.1146/annurev.cellbio.17.1. 753. ↑p. 34, 88
  99. I. Duncan. Transvection effects in Drosophila. Annual review of genetics, 36:521-56, 2002. doi: 10.1146/annurev.genet.36.060402.100441. ↑p. 29
  100. U. Avirneni-Vadlamudi, K. Galindo, T. Endicott, V. Paulson, S. Cameron, and R. Galindo. Drosophila and mammalian models uncover a role for the myoblast fusion gene TANC1 in rhabdomyosarcoma. The Journal of clinical investigation, 122(1):403-7, 2012. doi: 10.1172/JCI59877. ↑p. 16
  101. A. Rudolf, D. Buttgereit, M. Jacobs, G. Wolfstetter, D. Kesper, M. Pütz, S. Berger, R. Renkawitz-Pohl, A. Holz, and S. Önel. Distinct genetic programs guide Drosophila circular and longitudinal visceral myoblast fusion. BMC cell biology, 15:27, 2014. doi: 10.1186/1471-2121-15-27. ↑p. 104
  102. A. Strunnikov. One-hit wonders of genomic instability. Cell division, 5(1):15, 2010. doi: 10.1186/1747-1028-5-15. ↑p. 26, 31, 38
  103. J. Horsfield, S. Anagnostou, J. Hu, K. Cho, R. Geisler, G. Lieschke, K. Crosier, and P. Crosier. Cohesin-dependent regulation of Runx genes. Development (Cambridge, England), 134 (14):2639-49, 2007. doi: 10.1242/dev.002485. ↑p. 36
  104. B. Richardson, K. Beckett, S. Nowak, and M. Baylies. SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development (Cambridge, England), 134(24):4357-67, 2007. doi: 10.1242/dev.010678. ↑p. 14
  105. C. Bénard, H. Kébir, S. Takagi, and S. Hekimi. mau-2 acts cell-autonomously to guide axonal migrations in Caenorhabditis elegans. Development (Cambridge, England), 131(23): 5947-58, 2004. doi: 10.1242/dev.01433. ↑p. 36
  106. D. Dorsett, J. Eissenberg, Z. Misulovin, A. Martens, B. Redding, and K. McKim. Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development (Cambridge, England), 132(21):4743-53, 2005. doi: 10.1242/ dev.02064. ↑p. 35
  107. I. Reim and M. Frasch. The Dorsocross T-box genes are key components of the regulatory net- work controlling early cardiogenesis in Drosophila. Development (Cambridge, England), 132(22):4911-25, 2005. doi: 10.1242/dev.02077. ↑p. 55
  108. S. Percival, H. Thomas, A. Amsterdam, A. Carroll, J. Lees, H. Yost, and J. Parant. Variations in dysfunction of sister chromatid cohesion in esco2 mutant zebrafish reflect the phenotypic diversity of Roberts syndrome. Disease models & mechanisms, 8(8):941-55, 2015. doi: 10.1242/dmm.019059. ↑p. 34
  109. P. Coelho, J. Queiroz-Machado, and C. Sunkel. Condensin-dependent localisation of topoiso- merase II to an axial chromosomal structure is required for sister chromatid resolution during mitosis. Journal of cell science, 116(23):4763-76, 2003. doi: 10.1242/jcs.00799. ↑p. 23, 24, 25
  110. T. Hirota, D. Gerlich, B. Koch, J. Ellenberg, and J. Peters. Distinct functions of condensin I and II in mitotic chromosome assembly. Journal of cell science, 117(26):6435-45, 2004. doi: 10.1242/jcs.01604. ↑p. 24
  111. Arp2/3 complex during myoblast fusion. Journal of cell science, 121(8):1303-13, 2008. doi: 10.1242/jcs.022269. ↑p. 83
  112. M. Ocampo-Hafalla and F. Uhlmann. Cohesin loading and sliding. Journal of cell science, 124 (5):685-91, 2011. doi: 10.1242/jcs.073866. ↑p. 35
  113. J. Hamp, A. Löwer, C. Dottermusch-Heidel, L. Beck, B. Moussian, M. Flötenmeyer, and S. Anel. Drosophila Kette coordinates myoblast junction dissolution and the ratio of Scar-to-WASp during myoblast fusion. Journal of cell science, 129(18):3426-36, 2016. doi: 10.1242/jcs.175638. ↑p. 15, 16
  114. A. Carhan, K. Tang, C. Shirras, A. Shirras, and R. Isaac. Loss of Angiotensin-converting enzyme-related (ACER) peptidase disrupts night-time sleep in adult Drosophila melanogaster. The Journal of experimental biology, 214(4):680-6, 2011. doi: 10.1242/ jeb.049353. ↑p. 125
  115. E. Hartswood, J. Brodie, G. Vendra, I. Davis, and D. Finnegan. RNA:RNA interaction can enhance RNA localization in Drosophila oocytes. RNA (New York, N.Y.), 18(4):729-37, 2012. doi: 10.1261/rna.026674.111. ↑p. 82
  116. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS biology, 2(9):E259, 2004. doi: 10.1371/journal.pbio.0020259. ↑p. 35
  117. R. Nativio, K. Wendt, Y. Ito, J. Huddleston, S. Uribe-Lewis, K. Woodfine, C. Krueger, W. Reik, J. Peters, and A. Murrell. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS genetics, 5(11):e1000739, 2009. doi: 10.1371/ journal.pgen.1000739. ↑p. 36
  118. I. Kulemzina, M. Schumacher, V. Verma, J. Reiter, J. Metzler, A. Failla, C. Lanz, V. Sreed- haran, G. Rätsch, and D. Ivanov. Cohesin rings devoid of Scc3 and Pds5 maintain their stable association with the DNA. PLoS genetics, 8(8):e1002856, 2012. doi: 10.1371/journal.pgen.1002856. ↑p. 32
  119. C. Bauer, T. Hartl, and G. Bosco. Condensin II promotes the formation of chromosome territories by inducing axial compaction of polyploid interphase chromosomes. PLoS genetics, 8(8):e1002873, 2012. doi: 10.1371/journal.pgen.1002873. ↑p. 28
  120. S. Herzog, S. Nagarkar Jaiswal, E. Urban, A. Riemer, S. Fischer, and S. Heidmann. Functional dissection of the Drosophila melanogaster condensin subunit Cap-G reveals its exclusive association with condensin I. PLoS genetics, 9(4):e1003463, 2013. doi: 10.1371/journal. pgen.1003463. ↑p. 23
  121. C. Schaaf, Z. Misulovin, G. Sahota, A. Siddiqui, Y. Schwartz, T. Kahn, V. Pirrotta, M. Gause, and D. Dorsett. Regulation of the Drosophila Enhancer of split and invected-engrailed gene complexes by sister chromatid cohesion proteins. PloS one, 4(7):e6202, 2009. doi: 10.1371/journal.pone.0006202. ↑p. 35, 88
  122. S. Bulchand, S. Menon, S. George, and W. Chia. The intracellular domain of Dumbfounded affects myoblast fusion efficiency and interacts with Rolling pebbles and Loner. PloS one, 5(2):e9374, 2010. doi: 10.1371/journal.pone.0009374. ↑p. 14
  123. K. Dej, C. Ahn, and T. Orr-Weaver. Mutations in the Drosophila condensin subunit dCAP- G: defining the role of condensin for chromosome condensation in mitosis and gene expression in interphase. Genetics, 168(2):895-906, 2004. doi: 10.1534/genetics.104. 030908. ↑p. 24, 25, 26, 30, 107, 108
  124. N. Cobbe, E. Savvidou, and M. Heck. Diverse mitotic and interphase functions of condensins in Drosophila. Genetics, 172(2):991-1008, 2006. doi: 10.1534/genetics.105.050567. ↑p. 26, 31, 88, 106, 107
  125. S. Önel, M. Rust, R. Jacob, and R. Renkawitz-Pohl. Tethering membrane fusion: common and different players in myoblasts and at the synapse. Journal of neurogenetics, 28(3): 302-15, 2014. doi: 10.3109/01677063.2014.936014. ↑p. 15
  126. B. Wang, P. Butylin, and A. Strunnikov. Condensin function in mitotic nucleolar segregation is regulated by rDNA transcription. Cell cycle (Georgetown, Tex.), 5(19):2260-7, 2006. doi: 10.4161/cc.5.19.3292. ↑p. 25
  127. K. Weigmann, R. Klapper, T. Strasser, C. Rickert, G. Technau, H. Jäckle, W. Janning, and C. Klämbt. FlyMove -a new way to look at development of Drosophila, 2003. URL ↑p. 51, 108
  128. K. Kimura, V. Rybenkov, N. Crisona, T. Hirano, and N. Cozzarelli. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell, 98(2):239-48, 1999. ↑p. 23
  129. C. Georgias, M. Wasser, and U. Hinz. A basic-helix-loop-helix protein expressed in precursors of Drosophila longitudinal visceral muscles. Mechanisms of development, 69(1-2):115-24, 1997. ↑p. 78
  130. D. Tomkins and J. Sisken. Abnormalities in the cell-division cycle in Roberts syndrome fibrob- lasts: a cellular basis for the phenotypic characteristics? American journal of human genetics, 36(6):1332-40, 1984. ↑p. 37
  131. V. Guacci, D. Koshland, and A. Strunnikov. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell, 91(1):47-57, 1997. ↑p. 32
  132. W. Driever and C. Nüsslein-Volhard. A gradient of bicoid protein in Drosophila embryos. Cell, 54(1):83-93, 1988. ↑p. 104
  133. T. Hirano and T. Mitchison. A heterodimeric coiled-coil protein required for mitotic chromo- some condensation in vitro. Cell, 79(3):449-58, 1994. ↑p. 18, 31
  134. S. Weitzer, C. Lehane, and F. Uhlmann. A model for ATP hydrolysis-dependent binding of cohesin to DNA. Current biology : CB, 13(22):1930-40, 2003. ↑p. 34
  135. V. Larionov, T. Karpova, N. Kouprina, and G. Jouravleva. A mutant of Saccharomyces cerevisiae with impaired maintenance of centromeric plasmids. Current genetics, 10 (1):15-20, 1985. ↑p. 18
  136. S. Notarnicola, M. McIntosh, and K. Wise. A Mycoplasma hyorhinis protein with sequence similarities to nucleotide-binding enzymes. Gene, 97(1):77-85, 1991. ↑p. 18
  137. E. Chen and E. Olson. Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Developmental cell, 1(5):705-15, 2001. ↑p. 14
  138. D. Breier. A possible involvement of CalpainB in embryonic myogenesis of Drosophila melanogaster. Master's thesis, Philipps-Universität Marburg, 2009. ↑p. 116, 117, 118, 119, 120, 125
  139. C. Bourgouin, S. Lundgren, and J. Thomas. Apterous is a Drosophila LIM domain gene required for the development of a subset of embryonic muscles. Neuron, 9(3):549-61, 1992. ↑p. 109
  140. H. Birnboim and J. Doly. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic acids research, 7(6):1513-23, 1979. ↑p. 63
  141. W. Earnshaw and U. Laemmli. Architecture of metaphase chromosomes and chromosome scaffolds. The Journal of cell biology, 96(1):84-93, 1983. ↑p. 24
  142. S. Steffensen, P. Coelho, N. Cobbe, S. Vass, M. Costa, B. Hassan, S. Prokopenko, H. Bellen, M. Heck, and C. Sunkel. A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis. Current biology : CB, 11(5):295-307, 2001. ↑p. 24, 25
  143. C. Moore, C. Parkin, Y. Bidet, and P. Ingham. A role for the Myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion.
  144. T. Serano and R. Cohen. A small predicted stem-loop structure mediates oocyte localization of Drosophila K10 mRNA. Development (Cambridge, England), 121(11):3809-18, 1995. ↑p. 17
  145. N. Stevens. A study of the germ cells of certain Diptera, with reference to the heterochromo- somes and phenomena of synapsis. Journal of Experimental Zoology, 5:359-374, 1908. ↑p. 27
  146. P. Arumugam, S. Gruber, K. Tanaka, C. Haering, K. Mechtler, and K. Nasmyth. ATP hydrolysis is required for cohesin's association with chromosomes. Current biology : CB, 13(22): 1941-53, 2003. ↑p. 34
  147. K. Maeshima and U. Laemmli. A two-step scaffolding model for mitotic chromosome assembly. Developmental cell, 4(4):467-80, 2003. ↑p. 24
  148. R. Baker and G. Schubiger. Autonomous and nonautonomous Notch functions for embryonic muscle and epidermis development in Drosophila. Development (Cambridge, England), 122(2):617-26, 1996. ↑p. 11
  149. P. MacDonald. bicoid mRNA localization signal: phylogenetic conservation of function and RNA secondary structure. Development (Cambridge, England), 110(1):161-71, 1990. ↑p. 17
  150. D. D'Amours, F. Stegmeier, and A. Amon. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell, 117(4):455-69, 2004. ↑p. 25
  151. O. Cabello, E. Eliseeva, W. He, H. Youssoufian, S. Plon, B. Brinkley, and J. Belmont. Cell cycle-dependent expression and nucleolar localization of hCAP-H. Molecular biology of the cell, 12(11):3527-37, 2001. ↑p. 27
  152. M. Leptin and B. Grunewald. Cell shape changes during gastrulation in Drosophila. Develop- ment (Cambridge, England), 110(1):73-84, 1990. ↑p. 11
  153. M. Bate, E. Rushton, and D. Currie. Cells with persistent twist expression are the embryonic precursors of adult muscles in Drosophila. Development (Cambridge, England), 113(1): 79-89, 1991. ↑p. 13
  154. S. Takagi, C. Bénard, J. Pak, D. Livingstone, and S. Hekimi. Cellular and axonal migrations are misguided along both body axes in the maternal-effect mau-2 mutants of Caenorhabditis elegans. Development (Cambridge, England), 124(24):5115-26, 1997. ↑p. 36
  155. N. Patel, P. Snow, and C. Goodman. Characterization and cloning of fasciclin III: a glycoprotein expressed on a subset of neurons and axon pathways in Drosophila. Cell, 48(6):975-88, 1987. ↑p. 44
  156. M. Frasch, T. Hoey, C. Rushlow, H. Doyle, and M. Levine. Characterization and localization of the even-skipped protein of Drosophila. The EMBO journal, 6(3):749-59, 1987. ↑p. 70
  157. H. Dworak, M. Charles, L. Pellerano, and H. Sink. Characterization of Drosophila hibris, a gene related to human nephrin. Development (Cambridge, England), 128(21):4265-76, 2001. ↑p. 11, 14
  158. M. Bhat, A. Philp, D. Glover, and H. Bellen. Chromatid segregation at anaphase requires the barren product, a novel chromosome-associated protein that interacts with Topoiso- merase II. Cell, 87(6):1103-14, 1996. ↑p. 23, 24, 25, 26, 83, 107, 108
  159. S. Gruber, C. Haering, and K. Nasmyth. Chromosomal cohesin forms a ring. Cell, 112(6): 765-77, 2003. ↑p. 18, 32, 33
  160. M. Somma, B. Fasulo, G. Siriaco, and G. Cenci. Chromosome condensation defects in barren RNA-interfered Drosophila cells. Genetics, 165(3):1607-11, 2003. ↑p. 24
  161. F. Uhlmann, D. Wernic, M. Poupart, E. Koonin, and K. Nasmyth. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell, 103(3):375-86, 2000. ↑p. 34
  162. R. Birkenbihl and S. Subramani. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic acids research, 20(24):6605-11, 1992. ↑p. 32
  163. D. Solomon, J. Kim, and T. Waldman. Cohesin gene mutations in tumorigenesis: from discovery to clinical significance. BMB reports, 47(6):299-310, 2014. ↑p. 38
  164. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Molecular cell, 5(2):243-54, 2000. ↑p. 18
  165. C. Michaelis, R. Ciosk, and K. Nasmyth. Cohesins: chromosomal proteins that prevent pre- mature separation of sister chromatids. Cell, 91(1):35-45, 1997. ↑p. 18, 32, 33
  166. A. Carmena, S. Gisselbrecht, J. Harrison, F. Jiménez, and A. Michelson. Combinatorial sig- naling codes for the progressive determination of cell fates in the Drosophila embryonic mesoderm. Genes & development, 12(24):3910-22, 1998. ↑p. 11, 13
  167. T. Hummel, K. Schimmelpfeng, and C. Klämbt. Commissure formation in the embryonic CNS of Drosophila. Dev. Biol., 209:381-398, 1999a. ↑p. 53, 83
  168. T. Hummel, K. Schimmelpfeng, and C. Klämbt. Commissure formation in the embryonic CNS of Drosophila. Development, 126:771-779, 1999b. ↑p. 53, 83
  169. S. Yoshimura, K. Hizume, A. Murakami, T. Sutani, K. Takeyasu, and M. Yanagida. Condensin architecture and interaction with DNA: regulatory non-SMC subunits bind to the head of SMC heterodimer. Current biology : CB, 12(6):508-13, 2002. ↑p. 18, 21, 23, 33
  170. D. Hudson, P. Vagnarelli, R. Gassmann, and W. Earnshaw. Condensin is required for non- histone protein assembly and structural integrity of vertebrate mitotic chromosomes. Developmental cell, 5(2):323-36, 2003. ↑p. 24, 25
  171. T. Hirano, R. Kobayashi, and M. Hirano. Condensins, chromosome condensation protein com- plexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell, 89(4):511-21, 1997. ↑p. 18, 21, 31
  172. V. Riechmann, U. Irion, R. Wilson, R. Grosskortenhaus, and M. Leptin. Control of cell fates and segmentation in the Drosophila mesoderm. Development (Cambridge, England), 124(15):2915-22, 1997. ↑p. 11, 12
  173. R. Skibbens, L. Corson, D. Koshland, and P. Hieter. Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery.
  174. T. Ono, A. Losada, M. Hirano, M. Myers, A. Neuwald, and T. Hirano. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell, 115(1):109-21, 2003. ↑p. 21, 24
  175. G. Ranganayakulu, D. Elliott, R. Harvey, and E. Olson. Divergent roles for NK-2 class home- obox genes in cardiogenesis in flies and mice. Development (Cambridge, England), 125 (16):3037-48, 1998. ↑p. 54
  176. H. Nguyen, R. Bodmer, S. Abmayr, J. McDermott, and N. Spoerel. D-mef2: a Drosophila mesoderm-specific MADS box-containing gene with a biphasic expression profile during embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 91(16):7520-4, 1994. ↑p. 11
  177. B. Lilly, S. Galewsky, A. Firulli, R. Schulz, and E. Olson. D-MEF2: a MADS box transcription factor expressed in differentiating mesoderm and muscle cell lineages during Drosophila embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 91(12):5662-6, 1994. ↑p. 11
  178. R. Lupo, A. Breiling, M. Bianchi, and V. Orlando. Drosophila chromosome condensation proteins Topoisomerase II and Barren colocalize with Polycomb and maintain Fab-7 PRE silencing. Molecular cell, 7(1):127-36, 2001. ↑p. 29, 106
  179. M. Ruiz-Gómez, N. Coutts, A. Price, M. Taylor, and M. Bate. Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell, 102(2):189-98, 2000. ↑p. 14
  180. G. Hasan and M. Rosbash. Drosophila homologs of two mammalian intracellular Ca(2+)- release channels: identification and expression patterns of the inositol 1,4,5-triphosphate and the ryanodine receptor genes. Development (Cambridge, England), 116(4):967-75, 1992. ↑p. 133
  181. H. Duan, J. Skeath, and H. Nguyen. Drosophila Lame duck, a novel member of the Gli super- family, acts as a key regulator of myogenesis by controlling fusion-competent myoblast development. Development (Cambridge, England), 128(22):4489-500, 2001. ↑p. 11, 43
  182. S. Menon and W. Chia. Drosophila rolling pebbles: a multidomain protein required for my- oblast fusion that recruits D-Titin in response to the myoblast attractant Dumbfounded. Developmental cell, 1(5):691-703, 2001. ↑p. 14, 54, 100, 104, 109
  183. B. Bour, M. Chakravarti, J. West, and S. Abmayr. Drosophila SNS, a member of the im- munoglobulin superfamily that is essential for myoblast fusion. Genes & development, 14(12):1498-511, 2000. ↑p. 11, 14
  184. D. Bazett-Jones, K. Kimura, and T. Hirano. Efficient supercoiling of DNA by a single condensin complex as revealed by electron spectroscopic imaging. Molecular cell, 9(6):1183-90, 2002. ↑p. 23
  185. N. Reichert. Entwicklung von Myotuben bei Drosophila melanogaster: Analyse zweier EMS induzierter Mutanten und Protein-Protein Wechselwirkungen zwischen Rolling Pebbles und weiteren fusions-relevaten Proteinen. Dissertation zur Erlangung des Doktorgrades, 2004. Philipps-Universität Marburg. ↑p. 83
  186. J. Rusconi and V. Corbin. Evidence for a novel Notch pathway required for muscle precursor selection in Drosophila. Mechanisms of development, 79(1-2):39-50, 1998. ↑p. 11
  187. S. Gruber, P. Arumugam, Y. Katou, D. Kuglitsch, W. Helmhart, K. Shirahige, and K. Nasmyth. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge.
  188. K. Furuya, K. Takahashi, and M. Yanagida. Faithful anaphase is ensured by Mis4, a sister chromatid cohesion molecule required in S phase and not destroyed in G1 phase. Genes & development, 12(21):3408-18, 1998. ↑p. 18, 33
  189. M. Strünkelnberg, B. Bonengel, L. Moda, A. Hertenstein, H. de Couet, R. Ramos, and K. Fis- chbach. rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development (Cambridge, England), 128(21):4229-39, 2001. ↑p. 14
  190. T. Sutani, T. Yuasa, T. Tomonaga, N. Dohmae, K. Takio, and M. Yanagida. Fission yeast condensin complex: essential roles of non-SMC subunits for condensation and Cdc2 phosphorylation of Cut3/SMC4. Genes & development, 13(17):2271-83, 1999. ↑p. 24
  191. Y. Saka, T. Sutani, Y. Yamashita, S. Saitoh, M. Takeuchi, Y. Nakaseko, and M. Yanagida. Fission yeast cut3 and cut14, members of a ubiquitous protein family, are required for chromosome condensation and segregation in mitosis. The EMBO journal, 13(20):4938- 52, 1994. ↑p. 18, 24
  192. T. Kusch and R. Reuter. Functions for Drosophila brachyenteron and forkhead in mesoderm specification and cell signalling. Development (Cambridge, England), 126(18):3991- 4003, 1999. ↑p. 78
  193. S. K. Doberstein, R. D. Fetter, A. Y. Metha, and C. C. Goodman. Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex. J Cell Biol, 136:1249-1261, 1997. ↑p. 15, 16
  194. F. Verná, R. Gandhi, M. Goldberg, and M. Gatti. Genetic and molecular analysis of wings apart- like (wapl), a gene controlling heterochromatin organization in Drosophila melanogaster. Genetics, 154(4):1693-710, 2000. ↑p. 32
  195. G. Rubin and A. Spradling. Genetic transformation of Drosophila with transposable element vectors. Science (New York, N.Y.), 218(4570):348-53, 1982. ↑p. 9, 67
  196. C. Lewis and U. Laemmli. Higher order metaphase chromosome structure: evidence for met- alloprotein interactions. Cell, 29(1):171-81, 1982. ↑p. 24
  197. E. Lécuyer, A. Necakov, L. Cáceres, and H. Krause. High-resolution fluorescent in situ hy- bridization of Drosophila embryos and tissues. CSH protocols, 2008:pdb.prot5019, 2008. ↑p. 74, 77
  198. A. Losada, T. Yokochi, R. Kobayashi, and T. Hirano. Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. The Journal of cell biology, 150(3):405-16, 2000. ↑p. 32
  199. F. Yeong, H. Hombauer, K. Wendt, T. Hirota, I. Mudrak, K. Mechtler, T. Loregger, A. Marchler-Bauer, K. Tanaka, J. Peters, and E. Ogris. Identification of a subunit of a novel Kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A. Current biology : CB, 13(23):2058-64, 2003. ↑p. 21
  200. C. D'Ambrosio, C. Schmidt, Y. Katou, G. Kelly, T. Itoh, K. Shirahige, and F. Uhlmann. Identification of cis-acting sites for condensin loading onto budding yeast chromosomes.
  201. A. Losada, M. Hirano, and T. Hirano. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes & development, 12(13):1986-97, 1998. ↑p. 18, 34
  202. K. Anderson and C. Nüsslein-Volhard. Information for the dorsal-ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature, 311:223-7, September 1984. ↑p. 11
  203. P. Li, X. Yang, M. Wasser, Y. Cai, and W. Chia. Inscuteable and Staufen mediate asymmetric localization and segregation of prospero RNA during Drosophila neuroblast cell divisions. Cell, 90(3):437-47, 1997. ↑p. 104
  204. A. Schleiffer, S. Kaitna, S. Maurer-Stroh, M. Glotzer, K. Nasmyth, and F. Eisenhaber. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Molecular cell, 11(3): 571-5, 2003. ↑p. 18
  205. A. Carmena, M. Bate, and F. Jiménez. Lethal of scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis. Genes & develop- ment, 9(19):2373-83, 1995. ↑p. 11, 13
  206. W. Earnshaw and M. Heck. Localization of topoisomerase II in mitotic chromosomes. The Journal of cell biology, 100(5):1716-25, 1985. ↑p. 24
  207. P. Simpson. Maternal-Zygotic Gene Interactions during Formation of the Dorsoventral Pattern in Drosophila Embryos. Genetics, 105(3):615-32, 1983. ↑p. 11
  208. S. Gasser, T. Laroche, J. Falquet, E. Boy de la Tour, and U. Laemmli. Metaphase chromosome structure. Involvement of topoisomerase II. Journal of molecular biology, 188(4):613-29, 1986. ↑p. 24
  209. M. Trimborn, D. Schindler, H. Neitzel, and T. Hirano. Misregulated chromosome condensation in MCPH1 primary microcephaly is mediated by condensin II. Cell cycle (Georgetown, Tex.), 5(3):322-6, 2006. ↑p. 31
  210. J. Gottesfeld and D. Forbes. Mitotic repression of the transcriptional machinery. Trends in biochemical sciences, 22(6):197-202, 1997. ↑p. 30
  211. A. Philp. Mitotic sister-chromatid separation: what Drosophila mutants can tell us. Trends in cell biology, 8(4):150, 1998. ↑p. 88
  212. C. Haering, J. Löwe, A. Hochwagen, and K. Nasmyth. Molecular architecture of SMC proteins and the yeast cohesin complex. Molecular cell, 9(4):773-88, 2002. ↑p. 18, 31
  213. S. Denison, E. Käfer, and G. May. Mutation in the bimD gene of Aspergillus nidulans confers a conditional mitotic block and sensitivity to DNA damaging agents. Genetics, 134(4): 1085-96, 1993. ↑p. 32
  214. E. Rushton, R. Drysdale, S. Abmayr, A. Michelson, and M. Bate. Mutations in a novel gene, myoblast city, provide evidence in support of the founder cell hypothesis for Drosophila muscle development. Development (Cambridge, England), 121(7):1979-88, 1995. ↑p. 13
  215. M. Baylies, M. Bate, and M. Ruiz Gomez. Myogenesis: A view from Drosophila. Cell, 93(6): 921-7, 1998. ↑p. 12
  216. R. Rollins, P. Morcillo, and D. Dorsett. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics, 152(2):577-93, 1999. ↑p. 35
  217. R. Uzbekov, E. Timirbulatova, E. Watrin, F. Cubizolles, D. Ogereau, P. Gulak, V. Legagneux, V. Polyakov, K. Le Guellec, and I. Kireev. Nucleolar association of pEg7 and XCAP-E, two members of Xenopus laevis condensin complex in interphase cells. Journal of cell science, 116(9):1667-78, 2003. ↑p. 27
  218. S. Panizza, T. Tanaka, A. Hochwagen, F. Eisenhaber, and K. Nasmyth. Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Current Biology, 10(24):1557-64, 2000. ↑p. 32
  219. T. Hartman, K. Stead, D. Koshland, and V. Guacci. Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. The Journal of cell biology, 151(3):613-26, 2000. ↑p. 32
  220. K. Kimura, M. Hirano, R. Kobayashi, and T. Hirano. Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science (New York, N.Y.), 282(5388):487-90, 1998. ↑p. 23
  221. M. Kaur, C. DeScipio, J. McCallum, D. Yaeger, M. Devoto, L. Jackson, N. Spinner, and I. Krantz. Precocious sister chromatid separation (PSCS) in Cornelia de Lange syndrome.
  222. R. Saiki, D. Gelfand, S. Stoffel, S. Scharf, R. Higuchi, G. Horn, K. Mullis, and H. Erlich. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science (New York, N.Y.), 239(4839):487-91, 1988. ↑p. 57
  223. R. Dequin, H. Saumweber, and J. Sedat. Proteins shifting from the cytoplasm into the nuclei during early embryogenesis of Drosophila melanogaster. Developmental biology, 104(1): 37-48, 1984. ↑p. 70
  224. A. Nose, T. Isshiki, and M. Takeichi. Regional specification of muscle progenitors in Drosophila: the role of the msh homeobox gene. Development (Cambridge, England), 125(2):215-23, 1998. ↑p. 54, 77
  225. A. Rau, D. Buttgereit, A. Holz, R. Fetter, S. Doberstein, A. Paululat, N. Staudt, J. Skeath, A. Michelson, and R. Renkawitz-Pohl. rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion. Development (Cambridge, England), 128(24):5061-73, 2001. ↑p. 14, 17
  226. N. Saitoh, I. Goldberg, E. Wood, and W. Earnshaw. ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. The Journal of cell biology, 127(2):303-18, 1994. ↑p. 18, 21
  227. B. Thisse, C. Stoetzel, C. Gorostiza-Thisse, and F. Perrin-Schmitt. Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. The EMBO journal, 7(7):2175-83, 1988. ↑p. 11
  228. J. Ross, H. Jiang, M. Kanost, and Y. Wang. Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phy- logenetic relationships. Gene, 304:117-31, 2003. ↑p. 126
  229. E. Buff, A. Carmena, S. Gisselbrecht, F. Jiménez, and A. Michelson. Signalling by the Drosophila epidermal growth factor receptor is required for the specification and di- versification of embryonic muscle progenitors. Development (Cambridge, England), 125 (11):2075-86, 1998. ↑p. 11
  230. A. Strunnikov, V. Larionov, and D. Koshland. SMC1: an essential yeast gene encoding a putative head-rod-tail protein is required for nuclear division and defines a new ubiquitous protein family. The Journal of cell biology, 123(6):1635-48, 1993. ↑p. 18
  231. A. Strunnikov, E. Hogan, and D. Koshland. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family.
  232. K. Mullis, F. Faloona, S. Scharf, R. Saiki, G. Horn, and H. Erlich. Specific enzymatic amplifi- cation of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor symposia on quantitative biology, 51(1):263-73, 1986. ↑p. 57
  233. M. Ruiz-Gómez, S. Romani, C. Hartmann, H. Jäckle, and M. Bate. Specific muscle identities are regulated by Kruppel during Drosophila embryogenesis. Development (Cambridge, England), 124(17):3407-14, 1997. ↑p. 13, 91
  234. A. Akhmedov, C. Frei, M. Tsai-Pflugfelder, B. Kemper, S. Gasser, and R. Jessberger. Structural maintenance of chromosomes protein C-terminal domains bind preferentially to DNA with secondary structure. The Journal of biological chemistry, 273(37):24088-94, 1998. ↑p. 33
  235. A. Brand and N. Perrimon. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development (Cambridge, England), 118(2):401-15, 1993. ↑p. 69
  236. R. D'Amato, M. Loughnan, E. Flynn, and J. Folkman. Thalidomide is an inhibitor of angiogen- esis. Proceedings of the National Academy of Sciences of the United States of America, 91(9):4082-5, 1994. ↑p. 37
  237. S. Kaitna, P. Pasierbek, M. Jantsch, J. Loidl, and M. Glotzer. The aurora B kinase AIR- 2 regulates kinetochores during mitosis and is required for separation of homologous Chromosomes during meiosis. Current biology : CB, 12(10):798-812, 2002. ↑p. 24
  238. L. Freeman, L. Aragon-Alcaide, and A. Strunnikov. The condensin complex governs chromo- some condensation and mitotic transmission of rDNA. The Journal of cell biology, 149 (4):811-24, 2000. ↑p. 27
  239. J. Boulay, C. Dennefeld, and A. Alberga. The Drosophila developmental gene snail encodes a protein with nucleic acid binding fingers. Nature, 330:395-8, November 1987. ↑p. 11
  240. J. A. Campos-Ortega and V. Hartenstein. The Embryonic development of Drosophila melanogaster. Springer-Verlag, Berlin, 1985. ↑p. 137
  241. M. Bate. The embryonic development of larval muscles in Drosophila. Development (Cam- bridge, England), 110(3):791-804, 1990. ↑p. 13, 14
  242. K. Dej and A. Spradling. The endocycle controls nurse cell polytene chromosome structure dur- ing Drosophila oogenesis. Development (Cambridge, England), 126(2):293-303, 1999. ↑p. 28
  243. M. Wakelam. The fusion of myoblasts. The Biochemical journal, 228(1):1-12, 1985. ↑p. 10
  244. D. L. Lindsley and G. G. Zimm. The Genome of Drosophila melanogaster. Academic Press, San Diego, 1992. ↑p. 65
  245. M. Adams et al. The genome sequence of Drosophila melanogaster. Science, 287(5461): 2185-95, March 2000. ↑p. 9
  246. R. Artero, I. Castanon, and M. Baylies. The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Development (Cambridge, England), 128(21):4251-64, 2001. ↑p. 11
  247. Y. Hiraoka, A. Dernburg, S. Parmelee, M. Rykowski, D. Agard, and J. Sedat. The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. The Journal of cell biology, 120(3):591-600, 1993. ↑p. 27
  248. R. Birkenbihl and S. Subramani. The rad21 gene product of Schizosaccharomyces pombe is a nuclear, cell cycle-regulated phosphoprotein. The Journal of biological chemistry, 270 (13):7703-11, 1995. ↑p. 32
  249. C. Saunders and R. Cohen. The role of oocyte transcription, the 5'UTR, and translation repres- sion and derepression in Drosophila gurken mRNA and protein localization. Molecular cell, 3(1):43-54, 1999. ↑p. 17
  250. T. Melby, C. Ciampaglio, G. Briscoe, and H. Erickson. The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. The Journal of cell biology, 142(6):1595-604, 1998. ↑p. 18
  251. A. Spradling and G. Rubin. Transposition of cloned P elements into Drosophila germ line chromosomes. Science (New York, N.Y.), 218(4570):341-7, 1982. ↑p. 9, 67
  252. D. Leiss, U. Hinz, A. Gasch, R. Mertz, and R. Renkawitz-Pohl. Beta 3 tubulin expression char- acterizes the differentiating mesodermal germ layer during Drosophila embryogenesis.
  253. M. Baylies and M. Bate. twist: A myogenic switch in Drosophila. Science (New York, N.Y.), 272(5267):1481-4, 1996. ↑p. 11, 55
  254. I. Waizenegger, S. Hauf, A. Meinke, and J. Peters. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell, 103(3):399-410, 2000. ↑p. 34
  255. A. Tóth, R. Ciosk, F. Uhlmann, M. Galova, A. Schleiffer, and K. Nasmyth. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes & development, 13(3):320-33, 1999. ↑p. 18, 32, 33, 34
  256. V. Hartenstein. Atlas of Drosophila Development. In M. Bate and A. M. Arias, editors, The De- velopment of Drosophila melanogaster. Cold Spring Harbor Laboratory Press, New York, 1993. URL ↑p. 108, 137

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten