Publikationsserver der Universitätsbibliothek Marburg

Titel:Single-molecule Dynamics in Protein Interactions: Characterization of RarA and RecD2 of Bacillus subtilis
Autor:Romero Gonzalez, Hector
Weitere Beteiligte: Graumann, Peter L. (Prof. Dr.)
URN: urn:nbn:de:hebis:04-z2018-01107
DDC: Chemie
Titel (trans.):Einzelmoleküldynamik in Proteinwechselwirkungen: Charakterisierung von RarA und RecD2 von Bacillus subtilis


Fluoreszenzmikroskopie, single-molecule microscopy, Bakterien, Homologous recombination, Mikroskopische Technik, Molekulargenetik, Bacillus subtilis, DNA Reparatur, DNA repair, homologe Rekombination, fluorescence microscopy, Bacillus subtilis

Maintenance of genome integrity is one of the crucial functions in life, to preserve the appropriate genetic information, being homologous recombination a key process in the DNA repair. I have used a novel technique, using slim-field microscopy to obtain single-molecule dynamics of two poorly described proteins, RarA and RecD2, in different recombination deficient mutants and conditions to characterize them. Single-molecule microscopy has been shown as a powerful method for in vivo characterization of proteins and its interactions. Together with genetics, I have added a new level of complexity in the regulation of homologous recombination as a multiway process in which many factors are involved in different avenues with partially overlapping functions depending on the kind of DNA damage generated. I have characterized RarA and RecD2 as factors involved in recombination, but also in replication of the DNA, being part of both RecA-independent and RecA-dependent replication progression, and antagonistic regulators of RecA filamentation. RarA plays its role in replication through interactions with DnaB, and in recombination as a RecA positive regulator through its interactions with RecA, RecO, RecR, RecD2 and RecU. RarA is regulated by the RecQ-like helicases RecQ and RecS. RecD2 plays a role in chromosomal segregation that becomes essential in the absence of RecG or RuvAB, and is a negative regulator in homologous recombination that interacts with RecA, RarA, RecX, RecF and PcrA.

Bibliographie / References

  1. Jameson K.H. & Wilkinson A.J. (2017). Control of initiation of DNA replication in Bacillus subtilis and Escherichia coli. Genes. 8(22): doi:10.3390.
  2. Peters J.M., Colavin A., Shi H., Czarny T.L., Larson M.H., Wong S., Hawkins J.S., Lu C.H., Koo B.M., Marta E., Shiver A.L., Whitehead E.H., Weissman J.S., Brown E.D., Qi L.S., Huang K.C. & Gross C.A. (2016). A comprehensive, CRISPR- based functional analysis of essential genes in bacteria. Cell. 165: 1493-506.
  3. Gándara C., de Lucena D.K.C., Torres R., Serrano E., Altenburger S., Graumann P.L. & Alonso J.C. (2017) Activity and in vivo dynamics of Bacillus subtilis DisA are affected by RadA/Sms and by Holliday junction-processing proteins. DNA repair. 55: 17-30.
  4. Soultanas P. (2002). A functional interaction between the putative primosomal protein DnaI and the main replicative DNA helicase DnaB in Bacillus. Nucleic Acids Research. 30: 966-74.
  5. Sanchez H., Carrasco B., Ayora S. & Alonso J.C. (2007-A) Homologous recombination in low dC + dG Gram-positive bacteria. Springer Berlin/Heidelberg, Berlin, Heidelberg.
  6. Fernandez, S., Kobayashi, Y., Ogasawara, N. and Alonso, J.C. (1999) Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function. Mol Gen Genet, 261, 567-573.
  7. Fernandez S., Kobayashi Y., Ogasawara N. and Alonso J.C. (1999) Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function. Molecular and General Genetics. 261: 567-73.
  8. Kawabe Y.I., Branzeit D., Hayashi T., Suzuki H., Masuko T., Onoda F., Heo S.J., Ikeda H., Shimamoto A., Furuichi Y., Seki M. & Enomoto T. (2001). A novel protein interacts with the Werner's Syndrome gene product physically and functionally. The Journal of Biological Chemistry. 276(23): 20364-9.
  9. Lecointe F., Serena C., Velten M., Costes A., McGovern S., Meile J.C., Errington J., Ehrlich S.D., Noirot P. & Polard P. (2007). Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks. EMBO Journal. 26: 4239-51.
  10. Velten M., McGovern S., Marin S., Ehrlich S.D., Noirot P. & Polard P. (2003). A two- protein strategy for the functional loading of a cellular replicative DNA-helicase. Molecular Cell. 11: 1009-20.
  11. Ameida K.H. & Sobol R.W (2007) A unified view of base excision repair: lesion- dependent protein complexes regulated by post-translational modification. DNA Repair. 6: 695-711.
  12. Fernández S. Ayora S. & Alonso J.C. (2000). Bacillus subtilis homologous recombination: genes and products. Research in Microbiology. 151(6): 481-6.
  13. Vlasic I., Mertens R., Seco E.M., Carrasco B., Ayora S., Reitz G., Commichau F.M., Alonso J.C. & Moeller R. (2014). Bacillus subtilis RecA and its accessory factors, RecF RecO, RecR and RecX, are required for spore resistance to DNA double- strand break. Nucleic Acids Research 2014. 42: 2295-307.
  14. Vlasic, I., Mertens, R., Seco, E.M., Carrasco, B., Ayora, S., Reitz, G., Commichau, F.M., Alonso, J.C. and Moeller, R. (2014) Bacillus subtilis RecA and its accessory factors, RecF, RecO, RecR and RecX, are required for spore resistance to DNA double-strand break. Nucleic acids research, 42, 2295-2307.
  15. Sanchez H., Carraco B., Cozar M.C. & Alonso J.C. (2007-B). Bacillus subtilis RecG branch migration is required for DNA repair and chromosomal seggregation. Molecular Microbiology. 65: 920-35.
  16. Sanchez, H., Carrasco, B., Cozar, M.C. and Alonso, J.C. (2007) Bacillus subtilis RecG branch migration translocase is required for DNA repair and chromosomal segregation. Mol Microbiol, 65, 920-935.
  17. Carrasco B., Yadav T., Serrano E. & Alonso J.C. (2015). Bacillus subtilis RecO and SsbA are crucial for RecA-mediated recombinational DNA repair. Nucleic Acid Research. 43(12): 5984-97.
  18. Carrasco B., Ayora S., Lurz R. & Alonso J.C. (2005). Bacillus subtilis RecU Holliday- junction resolvase modulates RecA activities. Nucleic Acid Research. 33(12): 3942-52.
  19. Ayora S., Carrasco B., Doncel E., Lurz R. & Alonso J.C (2004). Bacillus subtilis RecU protein cleaves Holliday junctions and anneals single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America. 101: 452-7.
  20. Fu D., Calvo J.A. & Samson L.D. (2012). Balancing repair and tolerance of DNA damage caused by alkylating agents. Nature Reviews Cancer. 12: 104-20.
  21. Prise K.M., Davies S. & Michael B.D. (1989). Cell killing and DNA damage in Chinese hamster V79 cells. International Journal of Radiation Biology. 55(4): 583-92.
  22. Wiedermannova J., Sudzinova P., Koval T., Rabatinova A., Sanderova H., Ramaniuk O., Rittich S., Dohnalek J., Fu Z., Halada P., Lewis P. & Krasny L. (2014). Characterization of HelD, an interacting partner of RNA polymerase from Bacillus subtilis. Nucleic Acids Research. 42: 5151-63.
  23. Alonso, J.C., Tailor, R.H. and Luder, G (1988). Characterization of recombination- deficient mutants of Bacillus subtilis. Journal of bacteriology. 170: 3001-7.
  24. Alonso, J.C., Tailor, R.H. and Luder, G. (1988) Characterization of recombination- deficient mutants of Bacillus subtilis. Journal of bacteriology, 170, 3001-3007.
  25. Simmons L.A., Goranov A.I., Kobayashi H. Davies B.W., Yuan D.S., Grossman A.D. & Walker G.C. (2009) Comparison responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. Journal of bacteriology. 191(4): 1152-61.
  26. Sanchez H., Kidane D., CozarM.C., Graumann P.L. & Alonso J.C. (2007-C) Recruitment of Bacillus subtilis RecN to DNA double strand breaks in the absence of DNA end processing. Journal of Bacteriology 2006. 188: 353-60.
  27. Suzuki Y., Endo M., Canas C., Ayora S., Alonso J.C., Sugiyama H. & Takeyasu K. (2014). Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure. Nucleic Acids Research. 42: 7421-8.
  28. Gándara, C. & Alonso, J.C. (2015). DisA and c-di-AMP act at the intersection between DNA-damage response and stress homeostasis in exponentially growing Bacillus subtilis cells. DNA repair. 27: 1-8
  29. Duigou S., Ehrlich S.D., Noirot P. & Noirot-Gros M.F. (2004) Distinctive genetic features exhibited by the Y-family DNA polymerases in Bacillus subtilis. Molecular Microbiology. 54(2): 439-51.
  30. Bruand C., Farache M., McGovern S., Ehrlich S.D. & Polard P (2001). DnaB, DnaD and DnaI proteins are components of the Bacillus subtilis replication restart primosome. Molecular Microbiology. 42(1): 245-55.
  31. Stanage T.H., Page A.N., Cox M.N. (2017). DNA flap creation by RarA/MgsA protein of Escherichia coli. Nucleic Acid Research. 45(5): 2724-35.
  32. Wang J. & Julin D.A. (2004). DNA helicase activity of the RecD protein from Deinococcus radiodurans. Journal of Biological Chemistry. 279: 52024-32.
  33. Wu L. & Hickson I.D. (2006). DNA helicases required for homologous recombination and repair of damaged replication forks. Annual Review of Genetics. 40: 279- 306.
  34. Lenhart J.S, Schroeder J.W., Walsh B.W. & Simmons L.A. (2012). DNA repair and genome manteinance in Bacillus subtilis. Microbiology and Molecular Biology Reviews. 76(3): 530-64.
  35. Ayora S., Carrasco B., Cárdenas P.P., César C.E., Cañas C., Yadav T., Marchisone C. & Alonso J.C (2011). Double-strand break repair in bacteria: a view from Bacillus subtilis. FEMS Microbiology Reviews. 35: 1055-81.
  36. Kuzminov A. & Stahl F.W. (1999) Double-strand end repair via the RecBC pathway in Escherichia coli primes DNA replication. Genes and Development. 13(3): 345-
  37. Kidane D. & Graumann P.L. (2005). Dynamic formation of RecA filament at DNA double strand break repair centers in live cells. The Journal of Cell Biology. 357- 66.
  38. Alonso J.C., Cardenas P.P., Sanchez H., Hejna J., Suzuki Y. & Takeyasu K (2013). Early steps of double-strand break in Bacillus subtilis. DNA repair. 12: 162-76.
  39. Servinsky M.D. & Julin D.A. (2007). Effect of a recD mutation on DNA damage resistance and transformation in Deinococcus radiodurans. Journal of Bacteriology. 189: 5101-7.
  40. Petit M.A. & Ehrlich D. (2002). Essential bacterial helicases that counteract the toxicity of recombination proteins. The EMBO Journal. 21(12): 3137-47.
  41. Kidane D., Carrasco B., Manfredi C., Rothmaier K., Ayora S., Tadesse S., Alonso J.C. & Graumann P.L. (2009) Evidence for different pathways during horizontal gene transfer in competetent Bacillus subtilis. PLOS Genetics. 5(9): e1000630.
  42. Alonso, J.C., Stiege, C.A., Tailor, R.H. & Viret, J.F (1988). Functional analysis of the dna (Ts) mutants of Bacillus subtilis: plasmid pUB110 replication as a model system. Molecular and General Genetics. 214: 482-9
  43. Bruand C., Velten M., McGovern S., Marsin S., Serena C., Ehrlich S.D. & Polard P (2005). Functional interplay between the Bacillus subtilis DnaD and DnaB proteins essential for initiation and re-initiation of DNA replication. Molecular Microbiology. 55: 1138-50.
  44. Shibata T., Hishida T., Kubota Y., Han Y.W., Iwasaki H. & Shinagawa H. (2005). Functional overlap between RecA and MgsA (RarA) in the rescue of stalled replication forks in Escherichia coli. Genes to Cells. 10: 181-91.
  45. Ceglowski, P., Luder, G. and Alonso, J.C. (1990) Genetic analysis of recE activities in Bacillus subtilis. Mol Gen Genet, 222, 441-445.
  46. Ceglowski, P., Luder, G. & Alonso, J.C. (1990) Genetic analysis of recE activities in Bacillus subtilis. Molecular and General Genetics. 222: 4415.
  47. Carrasco B., Cozar M.C., Alonso J.C.& Ayora S (2004). Genetic recombination in Bacillus subtilis 168: contribution of holliday junction processing functions in chromosome segregation. Journal of Bacteriology. 186(17):5557-66.
  48. Carrasco B., Fernandez S., Petit M.A. & Alonso J.C. (2001). Genetic recombination in Bacillus subtilis 168: effect of (helD on DNA repair and homologous recombination. Journal of Bacteriology. 183: 5772-7.
  49. Alonso J.C., Stiege A.C. & Lüder G (1993). Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination. Molecular and General Genetics. 239: 129-36.
  50. Fernández S., Sorokin A. & Alonso J.C. (1988). Genetic recombination in Bacillus subtilis 168: effects of recU and recS mutations on DNA repair and homologous recombination. Journal of Bacteriology. 180: 3405-9.
  51. Fernández, S., Sorokin, A. and Alonso, J.C. (1998) Genetic recombination in Bacillus subtilis 168: effects of recU and recS mutations on DNA repair and homologous recombination. Journal of bacteriology, 180, 3405-3409.
  52. Yadav T., Carrasco B., Myers A.R., George N.P., Keck J.L. & Alonso J.C. (2012). Genetic recombination in Bacillus subtilis: a division of labor between two single- strand DNA-binding proteins. Nucleic Acid Research. 40(12): 5546-59.
  53. Griffith K.L. & Grossman A.D. (2008). Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP. Molecular Microbiology. 70: 1012-25.
  54. Cañas C., Suzuki Y., Marchisone C., Carrasco B., Freire-Beneitez V., Takeyasu K., Alonso J.C. & Ayora S (2014)., Interaction of branch migration translocases with the Holliday junction-resolving enzyme and their implications in Holliday junction resolution. The Journal of Biological Chemistry. 289: 17634-46.
  55. Torres R., Romero H., Rodríguez-Cerrato V. & Alonso J.C. (2017). Interplay between Bacillus subtilis RecD2 and the RecG or RuvAB helicase in recombinational repair. DNA repair. 55: 40-6.
  56. Torres, R., Romero, H., Rodriguez-Cerrato, V. and Alonso, J.C. (2017) Interplay between Bacillus subtilis RecD2 and the RecG or RuvAB helicase in recombinational repair. DNA repair, 55, 40-46.
  57. Renzette N., Gumlaw N., Nordman J.T., Krieger M., Yeh S.-P., Long E., Centore R., Boonsombat R. & Sandler S.J. (2005) Localization of RecA in Escherichia coli K- 12 using RecA-GFP. Molecular Microbiology. 57(4): 1074-85.
  58. Rudolph C.J., Upton A.L. & Lloyd R.G. (2008). Maintaining replication fork integrity in UV-irradiated Escherichia coli cells. DNA repair. 7: 1589-602.
  59. Persky N.S. & Lovett S.T. (2008). Mechanisms of recombination: lessons from E. coli. Critical Reviews in Biochemistry and Molecular Biology. 43: 347-70.
  60. Saikrishnan K., Powell B., Cook N.J., Webb M.R. & Wigley D.B. (2009). Mechanistic basis of 5'-3' translocation in SF1 B helicases. Cell. 137: 849-59.
  61. Plank M., Wadhams G.H. & Leake M.C. (2009). Miliseconds timescale slimfield imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes. Integrative Biology. 1: 602-12.
  62. Bernard R., Marquis K.A. & Rudner D.Z (2010). Nucleoid occlusion prevents cell division during replication fork arrest in Bacillus subtilis. Molecular Microbiology 2010. 78(4): 866-82.
  63. Reardon J.T. & Sancar A. Nucleotide excision repair. (2005) Progress in Nucleic Acid Research and Molecular Biology. 79: 183-235.
  64. Smits W.K., Goranov A.I. & Grossman A.D. (2010) Ordered association of helicase loader proteins with the Bacillus subtilis origin of replication in vivo. Molecular Microbiology. 75(2): 452-61.
  65. Park J., Myong S., Niedziela-Majka A., Lee K.S., Yu J., Lohman T.M. & Ha T. (2010). PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell. 142: 544-55.
  66. Petit M.A., Dervyn E., Rose M., Entian K.-D., McGovern S., Ehrlich S.D. & Bruand C. (1998). PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Molecular Microbiology. 29(1): 261-73.
  67. Thickman K., Bianco P.R. & Anand S.P. (2002). PcrA-mediated disruption nucleoprotein filaments-essential role of the ATPase activity of RecA. Nucleic Acid Research. 40(17): 8416-24.
  68. Fagerburg M.V., Schauer G.D., Thickman K.R., Bianco P.R., Khan S.A., Leuba S.H. & Anand S.P. (2012). PcrA-mediated disruption of RecA nucleoprotein filaments - essential role of the ATPase activity of RecA. Nucleic Acids Research. 40: 8416- 24.
  69. Baker T.A. & Bell S.P (1998). Polymerases and the replisome: machines within machines. Cell. 92(3): 295-305.
  70. West S.C. (1997). Processing of recombination intermediates by the RuvABC proteins. Annual Review Genetics. 31: 213-44.
  71. Yasbin R.E., Fields P.I. & Anderson B.J. (1980). Properties of Bacillus subtilis derivates freed of their natural prophages. Gene. 12: 155-9.
  72. Gupta M.K., Guy C.P., Yeeles J.T., Atkinson J., Bell H., Lloyd R.G., Marians K.J. & McGlynn P. (2013) Protein-DNA complexes are the primary sources of replication fork pausing in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America. 110: 7252-7.
  73. Bell J.C. & Kowalczykowski S.C. (2016) RecA: regulation and mechanism of a molecular search engine. Trends in Biochemical Sciences. 41(6): 491-507.
  74. Dillingham M.S. & Kowalczykowski S.C. (2008) RecBCD enzyme and the repair of doublestranded DNA breaks. Microbiology and Molecular Biology Reviews. 72: 642-71.
  75. Walsh B.W., Bolz S.A., Wessel S.R., Schroeder J.W., Keck J.L. & Simmons L.A. (2014). RecD2 helicase limits replication fork stress in Bacillus subtilis. Journal of Bacteriology. 196(7): 1359-68.
  76. Amundsen S.K., Taylor A.F., Chaudhury A.M., Smith G.R (1986). recD: the gene for an essential third subunit of exonuclease V. Proceedings of the National Academy of Sciences of the United States of America. 83: 5558-62.
  77. Lenhart J.S., Brandes E.R., Schroeder J.W., Sorenson R.J., Showalter H.D & Simmons L.A. (2014). RecO and RecR are necessary for RecA loading in response to DNA damage and replication fork stress. Journal of Bacteriology. 196(15): 2851-60.
  78. Sherrat D., Søballe B., Barre F.X., Filipe S.R., Lau I., Massey T. & Yates J. (2004). Recombination and chromosome segregation. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 359: 61-9.
  79. Sanders G.M., Dallman H.G., McHenry C.S. (2010). Reconstitution of the Bacillus subtilis replisome with 13 proteins including two distinct replicases. Molecular Cell. 37(2): 273-81.
  80. Courcelle J & Hanawalt P.C. (1999) RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV-irradiated Escherichia coli. Molecular & General Genetics. 262:543-551.
  81. Magner D.B., Blankschien M.D., Lee J.A., Pennington J.M., Lupski J.R. & Rosenberg S.M. (2007) RecQ promotes toxic recombination in cells lacking recombination intermediate-removal proteins. Molecular Cell. 26: 273-86.
  82. Sanchez H., Kidane D., Cozar M.C., Graumann P.L. & Alonso J.C. (2006) Recruitment of Bacillus subtilis RecA to DNA double strand breaks in absence of DNA end processing. Journal of Bacteriology. 188: 353-60.
  83. Sanchez, H., Kidane, D., Cozar, M.C., Graumann, P.L. and Alonso, J.C. (2006) Recruitment of Bacillus subtilis RecN to DNA double-strand breaks in the absence of DNA end processing. Journal of bacteriology, 188, 353-360.
  84. Gabbai C.B. & Marians K.J. (2010) Recruitment to stalled replication forks of the PriA DNA helicase and replisome-loading activities is essential for survival, DNA Repair. 9: 202-9.
  85. Cárdenas P.P., Carrasco B., Soufo C.D., César C.E., Herr K., Kaufenstein M., Graumann P. & Alonso J.C (2012). RecX facilitates homologous recombination by modulating RecA activities. PLOS Genetics. 8(12): e1003126.
  86. Cardenas, P.P., Carrasco, B., Defeu Soufo, C., Cesar, C.E., Herr, K., Kaufenstein, M., Graumann, P.L. and Alonso, J.C. (2012) RecX facilitates homologous recombination by modulating RecA activities. PLoS Genet, 8, e1003126.
  87. Barbour L. & Xiao W (2003). Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model. Mutation Research.532: 137-55.
  88. Cox M.M. (2007) Regulation of bacterial RecA protein function. Critical Reviews in Biochemistry and Molecular Biology. 42(1): 41-63.
  89. Sedgwick B. Repairing DNA-methylation damage (2004). Nature Reviews. Molecularr and Cell Biology. 5: 148-57.
  90. Septenville A.L., Duigou S., Boubakri H. & Michel B. (2012) Replication fork reversal after replication-transcription collision. PLOS Genetics.8(4): e1002622.
  91. Atkinson J. & McGlynn P (2009). Replication fork reversal and the maintenance of genome stability. Nucleic Acids Research. 37: 3475-92.
  92. Mirkin E.V. & Mirkin S.M. (2007). Replication fork stalling at natural impediments, Microbioly and Molecular Biology Reviews. 71: 13-35.
  93. Simmons L.A., Grossman A.D. & Walker G.C. (2006). Replication is required for the RecA localization response to DNA damage in Bacillus subtilis. PNAS. 104(4): 1360-5.
  94. Michel B. & Sandler S.J. (2017). Replication restart in Bacteria. Journal of Bacteriology. 199(13): e00102-17.
  95. Merrikh H., Zhang Y., Grossman A.D. & Wang J.D. (2012). Replication-transcription conflicts in bacteria. Nature Reviews. 10: 449-58.
  96. Guy C.P., Atkinson J., Gupta M.K., Mahdi A.A., Gwynn E.J., Rudolph C.J., Moon P.B., van Knippenberg I.C., Cadman C.J., Dillingham M.S., Lloyd R.G. & McGlynn P. (2009) Rep provides a second motor at the replisome to promote duplication of protein-bound DNA. Molecular Cell. 36: 654-66.
  97. Alonso J.C., Lüder G. & Trautner T.A (1986). Requirements for the formation of plasmid-transducing particles of Bacillus subtilis bacteriophage SPP1. EMBO Journal. 5:3723-8.
  98. Michel B., Flores M.J., Viguera E., Grompone G., Seigneur M. & Bidnenko V. (2001). Rescue of arrested replication forks by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America. 98: 8181- 8.
  99. Polard P., Marsin S., McGovern S., Velten M., Wigley D.B., Ehrlich S.D. & Bruand C. (2002). Restart of DNA replication in Gram-positive bacteria: a functional characterisation of the Bacillus subtilis PriA initiator. Nucleic Acid Research. 30: 1593-605.
  100. Keiler K.C., Waller P.R. & Sauer R.T. (1996). Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 271: 990-3.
  101. Seigneur M., Bidnenko V., Ehrlich S.D. & Michel B. (1998). RuvAB acts at arrested replication forks. Cell. 95: 419-30.
  102. Seigneur M., Ehrlich S.D. & Michel B. (2000). RuvABC-dependent double-strand breaks in dnaBts mutants require RecA. Molecular Microbiology. 38(3): 565-74.
  103. Baharoglu Z., Petranovic M., Flores M.J. & Michel B. RuvAB is essential for replication forks reversal in certain replication mutants. The EMBO Journal. 25: 596-604.
  104. Fairman-Williams M.E., Guenther U.P. & Jankowsky E. (2010). SF1 and SF2 helicases: family matters. Current Opinion in Structural Biology. 20: 313-24.
  105. Uphoff S. & Sherrat D. (2017). Single-molecule analysis of bacterial DNA repair and mutagenesis. Annual Review of Biophysics. 46: 411-32
  106. Lau I.F., Filipe S.R., Søballe B., Økstad O.A., Barre F.X. & Sherrat D.J. (2003). Spatial and temporal organization of replication Escherichia coli chromosomes. Molecular Microbiology. 49(3): 731-43.
  107. Berkmen M.B. & Grosmann A.D. (2006) Spatial and temporal organization of the Bacillus subtilis replication cycle. Molecular Microbiology. 62(1): 57-71.
  108. Kuong K.J. & Kuzminov A. (2010). Stalled replication fork repair and misrepair during thymineless death in Escherichia coli. Genes Cells. 15 (6): 619-34.
  109. Ragone S., Maman J.D., Furnham N. & Pellegrini L. (2008). Structural basis for inhibition of homologous recombination by the RecX protein. The EMBO Journal. 27(16): 2259-69.
  110. Page A.N., George N.P., Marceau A.H., Cox M.M. & Keck J.L. (2011). Structure and biochemical activities of Escherichia coli MgsA The Journal of Biological Chemistry 2011. 286(14) 12075-85.
  111. Singleton M.R., Dillingham M.S. & Wigley D.B. (2007). Structure and mechanism of helicases and nucleic acid translocases. Annual Review of Biochemistry. 76: 23- 50.
  112. Beyer D.C., Ghoneim M.K. & Spies M (2013). Structure and mechanisms of SF2 DNA helicases. Advances in Experimental Medicine and Biology. 767: 47-73.
  113. Gilhooly N.S., Gwynn E.J. & Dillingham M.S. (2013). Superfamily 1 helicases. Frontiers of Biosciences (Scholar Edition). 5:206-16.
  114. Dillingham M.S. (2011). Superfamily I helicases as modular components of DNA- processing machines. Biochemical Society Transactions. 39: 413-23.
  115. Meile J.C., Wu L.J., Ehrlich S.D., Errington J. & Noirot P. (2006). Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: identification of new proteins at the DNA replication factory. Proteomics. 6: 2135- 46.
  116. Kleine Borgman L.A.K., Ries J., Ewers H., Ulbrich M.H. & Graumann P.L. (2013). The bacterial SMC complex displays two distinct modes of interaction with the chromosome. Cell Reports. 3(5) 1483-92.
  117. Luise A., Borgman K., Ries J., Ewers H., Ulbrich M.H. & Graumann P.L. (2013). The bacterial SMC complex displays two distinct modes of interaction with the chromosome. Cell Reports. 3(5): 1483-92.
  118. Merrikh C.N., Brewer B.J. & Merrikh H. (2015). The B. subtilis accessory helicase PcrA facilitates DNA replication through transcription units. PLOS Genetics. 11: e1005289.
  119. Gwynn E.J., Smith A.J., Guy C.P., Savery N.J., McGlynn P. & Dillingham M.S. (2013) The conserved C-terminus of the PcrA/UvrD helicase interacts directly with RNA polymerase. PLOS One. 8: e78141.
  120. Costes A., Lecointe F., McGovern S., Quevillon-Cherual S. & Polard P. (2010). The C- Terminal domain of the bacterial SSB protein acts as a DNA maintenance hub at active chromosomal replication forks. PLOS Genetics. 6(12): e1001238.
  121. Voloshin O.N. & Camerini-Otero R.D. (2007). The DinG protein from Escherichia coli is a structure-specific helicase. Journal of Biological Chemistry. 282: 18437-47.
  122. Migocki M.D., Lewis P.J., Wake R.G. & Harry E.J. The midcell replication factory in Bacillus subtilis is highly mobile: implications for coordinating chromosome replication with other cell cycle events. Molecular Microbiology, 2004. 54(2): 452- 63.
  123. Bochman M.L., Judge C.P. & Zakian V.A (2011). The Pif1 family in prokaryotes: what are our helicases doing in your bacteria? Molecular Biology of the Cell. 22: 1955- 9.
  124. Yeeles J.T.P & Dillingham M.S. (2010). The processing of double-stranded DNA breaks for recombiantional repair by helicase-nuclease complexes. DNA repair 9: 276-85.
  125. Lusetti S.L., Hobbs M.D., Stohl E.A., Chitteni-Pattu S., Inman R.B., Seifert H.S. & Cox M.M. (2006) The RecF protein antagonizes RecX function via direct interaction. Molecular Cell. 21(1): 41-50.
  126. Barre F.X., Søballe B., Michel B., Aroyo M., Robertson M. & Sherratt D (2001). The replication-recombination-chromosome connection. PNAS. 98(15): 8189-95.
  127. Yang H., Yung M., Sikavi C. & Miller J.H. (2011). The role of Bacillus anthracis RecD2 helicase in DNA mismatch repair. DNA Repair. 10: 1121-30.
  128. Sanchez H., Kidane D., Reed P., Curtis F.A., Cozar M.C., Graumann P.L, Sharples G.J. & Alonso J.C. (2005). The RuvAB branch migration translocase and RecU Hector Romero Bibliography Bibliography Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis. Genetics. 171: 873-83.
  129. Sanchez, H., Kidane, D., Reed, P., Curtis, F.A., Cozar, M.C., Graumann, P.L., Sharples, G.J. and Alonso, J.C. (2005) The RuvAB branch migration translocase and RecU Holliday junction resolvase are required for double-stranded DNA break repair in Bacillus subtilis. Genetics, 171, 873
  130. McGregor N., Ayora S., Sedelnikova S., Carrasco B., Alonso J.C., Thaw P. & Rafferty J. (2005). The structure of Bacillus subtilis RecU Holliday junction resolvase and its role in substrate selection and sequence-specific cleavage. Structural Biology. 13 1341-51.
  131. Pyle A.M. (2008) Translocation and unwinding mechanism of RNA and DNA helicases. Annual Reviews in Biophysics. 37: 317-36.
  132. Lestini R. & Michel B. (2007). UvrD control the access of recombination proteins to blocked replication forks. The EMBO Journal. 26(16): 3804-14.
  133. Epsthtein V., Kamarthaopu V., McGary K., Svetlov V., Ueberheide B., Proshkin A., Mironov A. & Nudler E. (2014). UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature. 505: 372-7.
  134. Epshtein V. (2015). UvrD helicase: an old dog with a new trick: how one step backward leads to many steps forward. Bioassays. 37: 12-9.
  135. Veaute X., Delmas S., Selva M., Jeusset J., Le Cam E., Matic I., Fabre F. & Petit M.A. (2005). UvrD helicase unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. EMBO Journal. 24: 180-9.
  136. Kidane D., Sanchez H., Alonso J.C. & Graumann P.L. (2004). Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN protein to distinct sites on the nucleoids. Molecular Microbiology. 52(6): 1627-1639.

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten