Publikationsserver der Universitätsbibliothek Marburg

Titel:Exporling the Evolvability of Old Yellow Enzymes for Organic Synthesis
Autor:Nett, Nathalie
Weitere Beteiligte: Hoebenreich, Sabrina (Dr.)
URN: urn:nbn:de:hebis:04-z2017-07731
DDC: Chemie
Titel (trans.):Erforschung der Evolvierbarkeit von En-Reduktasen für die Organische Synthese


Protein Engineering, Biokatalyse, Enreductase, Proteindesign, Old Yellow Enzymes, Mutagenese, asymmetric hydrogenation, Hydrierung

In the presented thesis, guidelines for the evolution of flavin-dependent ene reductases, an in-dustrially important catalyst class, are reported. In the first part of this thesis it should be tested if mining the existing knowledge of the Old Yellow Enzyme family (OYE), obtained from directed evolution studies, may allow guided traversing through the sequence space and thereby shortcutting biocatalyst development. Iden-tified hotspot positions of YqjM from Bacillus subtilis, i.e. C26D/I69T and C26G for improvement of activity and stereoselectivity, respectively, were transferred to seven OYE scaffolds. The new-ly created variants were tested with three compounds revealing more stereocomplementary OYE pairs with potent turnover frequencies (up to 660 h-1) and excellent stereoselectivities (up to >99%). Although systematic prediction of absolute enantioselectivity still remains for OYE variants, ‘scaffold sampling’ was confirmed as a fast engineering method for this family allow-ing access to new, potent biocatalysts for organic synthesis. In the second part of this thesis the development and characterisation of an engineered panel of ene reductases (ERs) from Thermus scotoductus SA-01 (TsER) is reported, that combines control over facial selectivity in the reduction of electron deficient carbon-carbon double bonds with thermostability (up to 70 °C), organic solvent tolerance (up to 40% (v/v)) and a broad substrate scope (23 compounds, three of them new). The panel shows excellent enantiomeric excess (ee) and yields during gram scale synthesis (3.8 g). Exquisite turnover frequencies (TOF) up to 40 000 h-1 are achieved, which are comparable to rates in hetero- and homogeneous metal cata-lysed hydrogenations. Efforts to rationalize the stereocomplementarity are reported, using the obtained crystal structure of TsER C25D/I67T and in silico docking studies. Our holistic charac-terisation, together with the preparative scale reactions, shows that these engineered ERs are truly practical catalysts for preparative organic synthesis. In the third section the aforementioned panel of TsER variants was screened for bulkier sub-strate classes and further mutation sites were identified over semi-rational design for the suc-cessful biotransformation of coumarin-like structures. Thereby chemoselective variants with either hydrogenation or evidence for acid/base catalysis in the active site of TsER have been discovered. In general there is a great interest in using these highly selective trans-hydrogenation catalysts in the late stage synthesis of complex organic molecules.

Bibliographie / References

  1. H. S. Toogood, D. Mansell, J. M. Gardiner, N. S. Scrutton, 7.11 Reduction: Enantioselective Bioreduction of C-C Double Bonds in Comprehensive Chirality, Elsevier, 2012, 216-255.
  2. J. N. Marx, J. H. Cox, L. R. Norman, 2-Carbomethoxycyclopent-2-enone, J. Org. Chem. 1972, 37, 4489- 4491.
  3. D. Walker, J. D. Hiebert, 2,3-Dichloro-5,6-dicyanobenzoquinone and Its Reactions, Chem. Rev. 1967, 67, 153-195.
  4. M. T. Reetz, D. Kahakeaw, R. Lohmer, Addressing the Numbers Problem in Directed Evolution, ChemBi- oChem 2008, 9, 1797-1804.
  5. V. Sridharan, P. A. Suryavanshi, J. C. Menéndez, Advances in the chemistry of tetrahydroquinolines, Chem. Rev. 2011, 111, 7157-7259.
  6. H. S. Toogood, T. Knaus, N. S. Scrutton, Alternative Hydride Sources for Ene-Reductases: Current Trends, ChemCatChem 2014, 6, 951-954.
  7. H. Flores, A. D. Ellington, A modified consensus approach to mutagenesis inverts the cofactor specificity of Bacillus stearothermophilus lactate dehydrogenase, Protein Eng. Des. Sel. 2005, 18, 369-377.
  8. Le, I. C. Lennon, T. A. Mulhern, J. A. Ramsden, R. A. Wade, An enantioselective synthesis of (S)-(+)-3- aminomethyl-5-methylhexanoic acid via asymmetric hydrogenation, J. Org. Chem. 2003, 68, 5731-5734.
  9. Y. Ni, H.-L. Yu, G.-Q. Lin, J.-H. Xu, An ene reductase from Clavispora lusitaniae for asymmetric reduction of activated alkenes, Enzyme Microb. Technol. 2014, 56, 40-45.
  10. S. Horita, M. Kataoka, N. Kitamura, T. Nakagawa, T. Miyakawa, J. Ohtsuka, K. Nagata, S. Shimizu, M. Tanokura, An engineered old yellow enzyme that enables efficient synthesis of (4R,6R)-Actinol in a one-pot reduction system, ChemBioChem 2015, 16, 440-445.
  11. A. Matsushima, Y. Sato, M. Otsuka, T. Watanabe, H. Yamamoto, T. Hirata, An enone reductase from Nicotiana tabacum, Bioorg. Chem. 2008, 36, 23-28.
  12. N. Oberleitner, C. Peters, J. Muschiol, M. Kadow, S. Saß, T. Bayer, P. Schaaf, N. Iqbal, F. Rudroff, M. D. Mihovilovic, U. T. Bornscheuer, An Enzymatic Toolbox for Cascade Reactions: A Showcase for an In Vivo Redox Sequence in Asymmetric Synthesis, ChemCatChem 2013, 5, 3524-3528.
  13. T. Mukaiyama, J. Matsuo, H. Kitagawa, A New and One-Pot Synthesis of α,β-Unsaturated Ketones by Dehydrogenation of Various Ketones with N-tert -Butyl Phenylsulfinimidoyl Chloride, Chem. Lett. 2000, 29, 1250-1251.
  14. K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, A New Method for the One-Step Synthesis of α,β-Unsaturated Carbonyl Systems from Saturated Alcohols and Carbonyl Compounds, J. Am. Chem. Soc. 2000, 122, 7596- 7597.
  15. Y. S. Niino, S. Chakraborty, B. J. Brown, V. Massey, A New Old Yellow Enzyme of Saccharomyces cere- visiae, J. Biol. Chem. 1995, 270, 1983-1991.
  16. D. J. Opperman, L. A. Piater, E. van Heerden, A novel chromate reductase from Thermus scotoductus SA- 01 related to old yellow enzyme, J. Bacteriol. 2008, 190, 3076-3082.
  17. M. W. Fraaije, W. J. van Berkel, J. A. Benen, J. Visser, A. Mattevi, A novel oxidoreductase family sharing a conserved FAD-binding domain, Trends Biochem. Sci. 1998, 23, 206-207.
  18. J. Murciano-Calles, D. K. Romney, S. Brinkmann-Chen, A. R. Buller, F. H. Arnold, A Panel of TrpB Biocatalysts Derived from Tryptophan Synthase through the Transfer of Mutations that Mimic Allosteric Acti- vation, Angew. Chem. Int. Ed. 2016, 55, 11577-11581.
  19. R. Lindner, U. Heintz, A. Winkler, Applications of hydrogen deuterium exchange (HDX) for the character- ization of conformational dynamics in light-activated photoreceptors, Front. Mol. Biosci. 2015, 2, 33.
  20. E. D. Amato, J. D. Stewart, Applications of protein engineering to members of the old yellow enzyme family, Biotechnol. Adv. 2015, 33, 624-631.
  21. M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz- ing the principle of protein-dye binding, Anal. Biochem. 1976, 72, 248-254.
  22. M. M. Grau, J. C. van der Toorn, L. G. Otten, P. Macheroux, A. Taglieber, F. E. Zilly, I. W. C. E. Ar- ends, F. Hollmann, Photoenzymatic Reduction of C=C Double Bonds, Adv. Synth. Catal. 2009, 351, 3279- 3286.
  23. N. Nett, S. Duewel, L. Schmermund, G. E. Benary, K. E. Ranaghan, D. J. Opperman, A. J. Mulhol- land, S. Hoebenreich, A Robust and Stereocomplementary Panel of Ene-Reductase Variants for Gram-Scale Asymmetric Hydrogenation 2017, submitted.
  24. J. Z. Cheng, C. M. Coyle, D. G. Panaccione, S. E. O'Connor, A role for Old Yellow Enzyme in ergot alka- loid biosynthesis, J. Am. Chem. Soc. 2010, 132, 1776-1777.
  25. H. Günther, H. Simon, Artificial Electron Carriers for Preparative Biocatalytic Redox Reactions Forming Reversibly Carbon Hydrogen Bonds with Enzymes Present in Strict or Facultative Anaerobes, Biocatal. Bio- transform. 2009, 12, 1-26.
  26. H. S. Toogood, A. Fryszkowska, M. Hulley, M. Sakuma, D. Mansell, G. M. Stephens, J. M. Gardiner, N. S. Scrutton, A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that resi- dues 181 and 184 influence ligand binding, stereochemistry and reactivity, ChemBioChem 2011, 12, 738-749.
  27. C. Lin, D. E. Robertson, M. Ahmad, A. A. Raibekas, M. S. Jorns, P. L. Dutton, A. R. Cashmore, Asso- ciation of Flavin Adenine Dinucleotide with the Arabidopsis Blue Light Receptor CRY1, Science 1995, 269, 968-970.
  28. A. Fryszkowska, H. S. Toogood, D. Mansell, G. Stephens, J. M. Gardiner, N. S. Scrutton, A surprising observation that oxygen can affect the product enantiopurity of an enzyme-catalysed reaction, FEBS J. 2012, 279, 4160-4171.
  29. C. E. Paul, F. Hollmann, A survey of synthetic nicotinamide cofactors in enzymatic processes, Appl. Mi- crobiol. Biotechnol. 2016, 100, 4773-4778.
  30. A. Müller, B. Hauer, B. Rosche, Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase, Biotechnol. Bioeng. 2007, 98, 22-29.
  31. M. Hall, C. Stueckler, W. Kroutil, P. Macheroux, K. Faber, Asymmetric bioreduction of activated alkenes using cloned 12-oxophytodienoate reductase isoenzymes OPR-1 and OPR-3 from Lycopersicon esculentum (to- mato): a striking change of stereoselectivity, Angew. Chem. Int. Ed. 2007, 46, 3934-3937.
  32. R. Stuermer, B. Hauer, M. Hall, K. Faber, Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family, Curr. Opin. Chem. Biol. 2007, 11, 203-213.
  33. M. Hall, C. Stueckler, B. Hauer, R. Stuermer, T. Friedrich, M. Breuer, W. Kroutil, K. Faber, Asymmetric Bioreduction of Activated C=C Bonds UsingZymomonas mobilis NCR Enoate Reductase and Old Yellow En- zymes OYE 1-3 from Yeasts, Eur. J. Org. Chem. 2008, 2008, 1511-1516.
  34. E. Brenna, M. Crotti, F. G. Gatti, D. Monti, F. Parmeggiani, S. Santangelo, Asymmetric Bioreduction of β-Acylaminonitroalkenes: Easy Access to Chiral Building Blocks with Two Vicinal Nitrogen-Containing Func- tional Groups, ChemCatChem 2017, 9, 2480-2487.
  35. Y. Yanto, C. K. Winkler, S. Lohr, M. Hall, K. Faber, A. S. Bommarius, Asymmetric bioreduction of al- kenes using ene-reductases YersER and KYE1 and effects of organic solvents, Org. Lett. 2011, 13, 2540-2543.
  36. Kroutil, P. Macheroux, K. Faber, Asymmetric Bioreduction of C=C Bonds using Enoate Reductases OPR1, OPR3 and YqjM: Enzyme-Based Stereocontrol, Adv. Synth. Catal. 2008, 350, 411-418.
  37. M. A. Swiderska, J. D. Stewart, Asymmetric bioreductions of β-nitro acrylates as a route to chiral β 2 -amino acids, Org. Lett. 2006, 8, 6131-6133.
  38. W. S. Knowles, Asymmetric hydrogenation, Acc. Chem. Res. 1983, 16, 106-112.
  39. D. H. Woodmansee, A. Pfaltz, Asymmetric hydrogenation of alkenes lacking coordinating groups, Chem. Commun. (Camb) 2011, 47, 7912-7916.
  40. T. Hirata, K. Shimoda, T. Gondai, Asymmetric Hydrogenation of the C-C Double Bond of Enones with the Reductases from Nicotiana tabacum, Chem. Lett. 2000, 850-851.
  41. A. Fryszkowska, H. S. Toogood, M. Sakuma, J. M. Gardiner, G. Stephens, N. S. Scrutton, Asymmetric Reduction of Activated Alkenes by Pentaerythritol Tetranitrate Reductase: Specificity and Control of Stereo- chemical Outcome by Reaction Optimisation, Adv. Synth. Catal. 2009, 351, 2976-2990.
  42. K. Shimoda, N. Kubota, H. Hamada, M. Kaji, T. Hirata, Asymmetric reduction of enones with Synecho- coccus sp. PCC 7942, Tetrahedron: Asymmetry 2004, 15, 1677-1679.
  43. K. Shimoda, N. Kubota, H. Hamada, Asymmetric reduction of α,β-unsaturated carbonyl compounds with reductases from Nicotiana tabacum, Tetrahedron: Asymmetry 2004, 15, 2443-2446.
  44. C. K. Winkler, C. Stueckler, N. J. Mueller, D. Pressnitz, K. Faber, Asymmetric Synthesis of O-Protected Acyloins Using Enoate Reductases: Stereochemical Control through Protecting Group Modification, Eur. J. Org. Chem. 2010, 2010, 6354-6358.
  45. J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, D. C. Phillips, A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis, Nature 1958, 181, 662-666.
  46. D. Mangan, I. Miskelly, T. S. Moody, A Three-Enzyme System Involving an Ene-Reductase for Generat- ing Valuable Chiral Building Blocks, Adv. Synth. Catal. 2012, 354, 2185-2190.
  47. Scrutton, Atomic resolution structures and solution behavior of enzyme-substrate complexes of Enterobacter cloacae PB2 pentaerythritol tetranitrate reductase. Multiple conformational states and implications for the mechanism of nitroaromatic explosive degradation, J. Biol. Chem. 2004, 279, 30563-30572.
  48. C. J. Woods, M. Malaisree, S. Hannongbua, A. J. Mulholland, A water-swap reaction coordinate for the calculation of absolute protein-ligand binding free energies, J. Chem. Phys. 2011, 134, 54114.
  49. S. Servi, Baker's Yeast as a Reagent in Organic Synthesis, Synthesis 1990, 1990, 1-25.
  50. R. Csuk, B. I. Glaenzer, Baker's yeast mediated transformations in organic chemistry, Chem. Rev. 1991, 91, 49-97.
  51. G. Fogliato, G. Fronza, C. Fuganti, S. Lanati, R. Rallo, R. Rigoni, S. Servi, Baker's yeast reduction of arylidenecycloalkanones, Tetrahedron 1995, 51, 10231-10240.
  52. T. Knaus, C. E. Paul, C. W. Levy, S. de Vries, F. G. Mutti, F. Hollmann, N. S. Scrutton, Better than Nature: Nicotinamide Biomimetics That Outperform Natural Coenzymes, J. Am. Chem. Soc. 2016, 138, 1033- 1039.
  53. M. T. Reetz, Biocatalysis in organic chemistry and biotechnology: past, present, and future, J. Am. Chem.
  54. G. Carrea, Biocatalysis in water-organic solvent two-phase systems, Trends Biotechnol. 1984, 2, 102-106.
  55. Scrutton, Biocatalysis with Thermostable Enzymes: Structure and Properties of a Thermophilic 'ene'-Reductase related to Old Yellow Enzyme, ChemBioChem 2010, 11, 197-207.
  56. H. S. Toogood, J. M. Gardiner, N. S. Scrutton, Biocatalytic Reductions and Chemical Versatility of the Old Yellow Enzyme Family of Flavoprotein Oxidoreductases, ChemCatChem 2010, 2, 892-914.
  57. A. Z. Walton, W. C. Conerly, Y. Pompeu, B. Sullivan, J. D. Stewart, Biocatalytic Reductions of Baylis- Hillman Adducts, ACS Catal. 2011, 1, 989-993.
  58. X. Gao, J. Ren, Q. Wu, D. Zhu, Biochemical characterization and substrate profiling of a new NADH- dependent enoate reductase from Lactobacillus casei, Enzyme Microb. Technol. 2012, 51, 26-34.
  59. C. Stueckler, N. J. Mueller, C. K. Winkler, S. M. Glueck, K. Gruber, G. Steinkellner, K. Faber, Bioreduc- tion of alpha-methylcinnamaldehyde derivatives: chemo-enzymatic asymmetric synthesis of Lilial and Helional, Dalton Trans. 2010, 39, 8472-8476.
  60. M. Bechtold, E. Brenna, C. Femmer, F. G. Gatti, S. Panke, F. Parmeggiani, A. Sacchetti, Biotechnologi- cal Development of a Practical Synthesis of Ethyl (S )-2-Ethoxy-3-(p -methoxyphenyl)propanoate (EEHP): Over 100-Fold Productivity Increase from Yeast Whole Cells to Recombinant Isolated Enzymes, Org. Process Res.
  61. H.-P. Meyer, O. Ghisalba, J. E. Leresche, Biotransformations and the Pharma Industry in Handbook of Green Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2010.
  62. C. R. Pudney, S. Hay, N. S. Scrutton, Bipartite recognition and conformational sampling mechanisms for hydride transfer from nicotinamide coenzyme to FMN in pentaerythritol tetranitrate reductase, FEBS J. 2009, 276, 4780-4789.
  63. D. Monti, M. C. Forchin, M. Crotti, F. Parmeggiani, F. G. Gatti, E. Brenna, S. Riva, Cascade Coupling of Ene-Reductases and ω-Transaminases for the Stereoselective Synthesis of Diastereomerically Enriched Amines, ChemCatChem 2015, 7, 3106-3109.
  64. X. Cui, K. Burgess, Catalytic homogeneous asymmetric hydrogenations of largely unfunctionalized alkenes, Chem. Rev. 2005, 105, 3272-3296.
  65. L. T. Quertinmont, S. Lutz, Cell-free protein engineering of Old Yellow Enzyme 1 from Saccharomyces pastorianus, Tetrahedron 2016, 72, 7282-7287.
  66. Y. Yanto, H.-H. Yu, M. Hall, A. S. Bommarius, Characterization of xenobiotic reductase A (XenA): study of active site residues, substrate spectrum and stability, Chem. Commun. 2010, 46, 8809-8811.
  67. T. B. Fitzpatrick, N. Amrhein, P. Macheroux, Characterization of YqjM, an Old Yellow Enzyme homolog from Bacillus subtilis involved in the oxidative stress response, J. Biol. Chem. 2003, 278, 19891-19897.
  68. C. Neylon, Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution, Nucleic Acids Res. 2004, 32, 1448-1459.
  69. Wong, K. Faber, Chemoenzymatic asymmetric synthesis of pregabalin precursors via asymmetric bioreduction of β-cyanoacrylate esters using ene-reductases, J. Org. Chem. 2013, 78, 1525-1533.
  70. J. Bernard, E. van Heerden, I. W. C. E. Arends, D. J. Opperman, F. Hollmann, Chemoenzymatic Reduc- tion of Conjugated C=C Double Bonds, ChemCatChem 2012, 4, 196-199.
  71. Y. Yu, S. Lutz, Circular permutation: a different way to engineer enzyme structure and function, Trends Biotechnol. 2011, 29, 18-25.
  72. M. Kataoka, A. Kotaka, R. Thiwthong, M. Wada, S. Nakamori, S. Shimizu, Cloning and overexpression of the old yellow enzyme gene of Candida macedoniensis, and its application to the production of a chiral com- pound, J. Biotechnol. 2004, 114, 1-9.
  73. D. S. Blehert, B. G. Fox, G. H. Chambliss, Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases, J. Bacteriol. 1999, 181, 6254-6263.
  74. Y. Wang, M. J. Bartlett, C. A. Denard, J. F. Hartwig, H. Zhao, Combining Rh-Catalyzed Diazocoupling and Enzymatic Reduction To Efficiently Synthesize Enantioenriched 2-Substituted Succinate Derivatives, ACS Catal. 2017, 7, 2548-2552.
  75. H. Gröger, W. Hummel, Combining the 'two worlds' of chemocatalysis and biocatalysis towards multi-step one-pot processes in aqueous media, Curr. Opin. Chem. Biol. 2014, 19, 171-179.
  76. A. Brigé, D. van den Hemel, W. Carpentier, L. de Smet, J. J. van Beeumen, Comparative characterization and expression analysis of the four Old Yellow Enzyme homologues from Shewanella oneidensis indicate differ- ences in physiological function, Biochem. J. 2006, 394, 335-344.
  77. Y. Fu, K. Castiglione, D. Weuster-Botz, Comparative characterization of novel ene-reductases from cyano- bacteria, Biotechnol. Bioeng. 2013, 110, 1293-1301.
  78. J. F. Chaparro-Riggers, T. A. Rogers, E. Vazquez-Figueroa, K. M. Polizzi, A. S. Bommarius, Compari- son of Three Enoate Reductases and their Potential Use for Biotransformations, Adv. Synth. Catal. 2007, 349, 1521-1531.
  79. C. J. Woods, M. Malaisree, B. Long, S. McIntosh-Smith, A. J. Mulholland, Computational assay of H7N9 influenza neuraminidase reveals R292K mutation reduces drug binding affinity, Sci. Rep. 2013, 3, 3561.
  80. K. Swiderek, I. Tunon, V. Moliner, J. Bertran, Computational strategies for the design of new enzymatic functions, Arch. Biochem. Biophys. 2015, 582, 68-79.
  81. G. M. Chateauneuf, R. E. Brown, B. J. Brown, Computational studies of electron-transfer processes in old yellow enzyme, Int. J. Quantum Chem. 2001, 85, 685-692.
  82. M. P. Frushicheva, M. J. L. Mills, P. Schopf, M. K. Singh, R. B. Prasad, A. Warshel, Computer aided enzyme design and catalytic concepts, Curr. Opin. Chem. Biol. 2014, 21, 56-62.
  83. W. D. Dean, D. M. Blum, Condensation of arylacetonitriles with glyoxylic acid. Facile synthesis of arylmale- ic acid derivatives, J. Org. Chem. 1993, 58, 7916-7917.
  84. B. T. Porebski, A. M. Buckle, Consensus protein design, Protein Eng. Des. Sel. 2016, 29, 245-251.
  85. J. Mongan, D. A. Case, J. A. McCammon, Constant pH molecular dynamics in generalized Born implicit solvent, J. Comput. Chem. 2004, 25, 2038-2048.
  86. M. T. Reetz, J. Sanchis, Constructing and analyzing the fitness landscape of an experimental evolutionary process, ChemBioChem 2008, 9, 2260-2267.
  87. R. J. Marles, C. M. Compadre, N. R. Farnsworth, Coumarin in Vanilla Extracts: Its Detection and Signif- icance, Econ. Bot. 1987, 41, 41-47.
  88. M. W. Fraaije, R. H. H. van den Heuvel, W. J. H. van Berkel, A. Mattevi, Covalent Flavinylation Is Essential for Efficient Redox Catalysis in Vanillyl-alcohol Oxidase, J. Biol. Chem. 1999, 274, 35514-35520.
  89. M. T. Reetz, A. Zonta, K. Schimossek, K.-E. Jaeger, K. Liebeton, Creation of Enantioselective Biocatalysts for Organic Chemistry by In Vitro Evolution, Angew. Chem. Int. Ed. Engl. 1997, 36, 2830-2832.
  90. S. Reich, H. W. Hoeffken, B. Rosche, B. M. Nestl, B. Hauer, Crystal Structure Determination and Muta- genesis Analysis of the Ene Reductase NCR, ChemBioChem 2012, 13, 2400-2407.
  91. D. J. Opperman, B. T. Sewell, D. Litthauer, M. N. Isupov, J. A. Littlechild, E. van Heerden, Crystal structure of a thermostable old yellow enzyme from Thermus scotoductus SA-01, Biochem. Biophys. Res.
  92. T. Barna, H. L. Messiha, C. Petosa, N. C. Bruce, N. S. Scrutton, P. C. E. Moody, Crystal structure of bacterial morphinone reductase and properties of the C191A mutant enzyme, J. Biol. Chem. 2002, 277, 30976- 30983.
  93. T. M. Barna, H. Khan, N. C. Bruce, I. Barsukov, N. S. Scrutton, P. C. Moody, Crystal structure of pentae- rythritol tetranitrate reductase: "flipped" binding geometries for steroid substrates in different redox states of the enzyme, J. Mol. Biol. 2001, 310, 433-447.
  94. D. M. Weinreich, N. F. Delaney, M. A. Depristo, D. L. Hartl, Darwinian evolution can follow only very few mutational paths to fitter proteins, Science 2006, 312, 111-114.
  95. J. Pang, S. Hay, N. S. Scrutton, M. J. Sutcliffe, Deep tunneling dominates the biologically important hy- dride transfer reaction from NADH to FMN in morphinone reductase, J. Am. Chem. Soc. 2008, 130, 7092- 7097.
  96. R. Agudo, M. T. Reetz, Designer cells for stereocomplementary de novo enzymatic cascade reactions based on laboratory evolution, Chem. Commun. 2013, 49, 10914-10916.
  97. E. Vázquez-Figueroa, J. Chaparro-Riggers, A. S. Bommarius, Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept, ChemBioChem 2007, 8, 2295-2301.
  98. M. J. Chalmers, S. A. Busby, B. D. Pascal, G. M. West, P. R. Griffin, Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions, Expert Rev. Proteomics 2011, 8, 43-59.
  99. M. Goldsmith, D. S. Tawfik, Directed enzyme evolution: beyond the low-hanging fruit, Curr. Opin. Struct. Biol. 2012, 22, 406-412.
  100. D. J. Bougioukou, S. Kille, A. Taglieber, M. T. Reetz, Directed Evolution of an Enantioselective Enoate- Reductase: Testing the Utility of Iterative Saturation Mutagenesis, Adv. Synth. Catal. 2009, 351, 3287-3305.
  101. F. H. Arnold, A. A. Volkov, Directed evolution of biocatalysts, Curr. Opin. Chem. Biol. 1999, 54-59.
  102. U. T. Bornscheuer, Directed Evolution of Enzymes, Angew. Chem. Int. Ed. 1998, 3105-3108.
  103. E. G. Hibbert, T. Senussi, S. J. Costelloe, W. Lei, M. E. B. Smith, J. M. Ward, H. C. Hailes, P. A. Dalby, Directed evolution of transketolase activity on non-phosphorylated substrates, J. Biotechnol. 2007, 131, 425- 432.
  104. J. A. Seijas, M. P. Vázquez-Tato, M. M. Martínez, G. Núñez-Corredoira, Direct Synthesis of Imides from Dicarboxylic Acids using Microwaves, J. Chem. Res. (S) 1999, 0, 420-421.
  105. G. A. Behrens, A. Hummel, S. K. Padhi, S. Schätzle, U. T. Bornscheuer, Discovery and Protein Engineer- ing of Biocatalysts for Organic Synthesis, Adv. Synth. Catal. 2011, 353, 2191-2215.
  106. L. Kulishova, Dissertation, Analysis of factors influencing enzyme activity and stability in the solid state, Heinrich-Heine-Universität Düsseldorf, 2010.
  107. Y. Yanto, Dissertation, Evaluation of novel enoate reductases as potential biocatalyst for enantiomerically pure compound synthesis, Georgia Institute of Technology, 2011.
  108. S. Kille, Dissertation, Flavoproteins in Directed Evolution, Iterative CASTing to evolve YqjM and P450BM3, Ruhr Universität Bochum, 2010.
  109. A. Geddes, C. E. Paul, S. Hay, F. Hollmann, N. S. Scrutton, Donor-Acceptor Distance Sampling Enhanc- es the Performance of "Better than Nature" Nicotinamide Coenzyme Biomimetics, J. Am. Chem. Soc. 2016, 138, 11089-11092.
  110. M. Lotti, F. Secundo, Editorial: protein stabilization -crossroad for protein-based processes and products, Biotechnol. J. 2015, 10, 341-342.
  111. H. Theorell, K. Yagi, G. D. Ludwig, F. Egami, Effect of Flavin Monosulphate on Old Yellow Enzyme, Nature 1957, 180, 922-923.
  112. H. Simon, H. Günther, J. Bader, W. Tischer, Electro-Enzymatic and Electro-Microbial Stereospecific Re- ductions, Angew. Chem. Int. Ed. Engl. 1981, 20, 861-863.
  113. K. Fisher, S. Mohr, D. Mansell, N. J. Goddard, P. R. Fielden, N. S. Scrutton, Electro-enzymatic vio- logen-mediated substrate reduction using pentaerythritol tetranitrate reductase and a parallel, segmented fluid flow system, Catal. Sci. Technol. 2013, 3, 1505-1511.
  114. K. B. Sharpless, R. F. Lauer, A. Y. Teranishi, Electrophilic and nucleophilic organoselenium reagents. New routes to α,β-unsaturated carbonyl compounds, J. Am. Chem. Soc. 1973, 95, 6137-6139.
  115. D. G. Blackmond, A. Lightfoot, A. Pfaltz, T. Rosner, P. Schnider, N. Zimmermann, Enantioselective hydrogenation of olefins with phosphinooxazoline-iridium catalysts, Chirality 2000, 12, 442-449.
  116. P. P. Kelly, D. Lipscomb, D. J. Quinn, K. Lemon, J. Caswell, J. Spratt, B. Kosjek, M. Truppo, T. S. Moody, Ene Reductase Enzymes for the Aromatisation of Tetralones and Cyclohexenones to Naphthols and Phenols, Adv. Synth. Catal. 2016, 358, 731-736.
  117. U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, K. Robins, Engineering the third wave of biocatalysis, Nature 2012, 485, 185-194.
  118. J. T. Park, L. M. Gómez Ramos, A. S. Bommarius, Engineering towards Nitroreductase Functionality in Ene-Reductase Scaffolds, ChemBioChem 2015, 16, 811-818.
  119. D. W. Rogers, Y. Zhao, M. Traetteberg, M. Hulce, J. Liebman, Enthalpies of hydrogenation and for- mation of enones. Resonance energies of 2-cyclopentenone and 2-cyclohexenone, J. Chem. Thermodyn. 1998, 30, 1393-1400.
  120. A. Müller, B. Hauer, B. Rosche, Enzymatic reduction of the α,β-unsaturated carbon bond in citral, J. Mol. Catal. B: Enzym. 2006, 38, 126-130.
  121. F. Hollmann, I. W. C. E. Arends, D. Holtmann, Enzymatic reductions for the chemist, Green Chem. 2011, 13, 2285.
  122. T. A. Glauser, A. Cnaan, S. Shinnar, D. G. Hirtz, D. Dlugos, D. Masur, P. O. Clark, E. V. Capparelli, P. C. Adamson, Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy, N. Engl. J. Med. 2010, 362, 790-799.
  123. C. M. Clouthier, J. N. Pelletier, Expanding the organic toolbox: a guide to integrating biocatalysis in synthe- sis, Chem. Soc. Rev. 2012, 41, 1585-1605.
  124. Sabine Düwel, Master Thesis, Exploring the Evolvability of Ene-ReductasesTsER, DrER and RmER to- wards Activity, Philipps-Universität Marburg, 2015.
  125. L. Kulishova, K. Dimoula, M. Jordan, A. Wirtz, D. Hofmann, B. Santiago-Schübel, J. Fitter, M. Pohl, A. C. Spiess, Factors influencing the operational stability of NADPH-dependent alcohol dehydrogenase and an NADH-dependent variant thereof in gas/solid reactors, J. Mol. Catal. B: Enzym. 2010, 67, 271-283.
  126. R. J. Kazlauskas, U. T. Bornscheuer, Finding better protein engineering strategies, Nat. Chem. Biol. 2009, 5, 526-529.
  127. E. Rüthlein, T. Classen, L. Dobnikar, M. Schölzel, J. Pietruszka, Finding the Selectivity Switch -A Ra- tional Approach towards Stereocomplementary Variants of the Ene Reductase YqjM, Adv. Synth. Catal. 2015, 357, 1775-1786.
  128. M. W. Fraaije, A. Mattevi, Flavoenzymes: diverse catalysts with recurrent features, Trends Biochem. Sci. 2000, 25, 126-132.
  129. S. K. Chapman, Ed, Flavoprotein Protocols; Humana Press, Totowa, NJ, 1999.
  130. Scrutton, Focused directed evolution of pentaerythritol tetranitrate reductase by using automated anaerobic ki- netic screening of site-saturated libraries, ChemBioChem 2010, 11, 2433-2447.
  131. N. Homeyer, H. Gohlke, Free Energy Calculations by the Molecular Mechanics Poisson-Boltzmann Surface Area Method, Mol. Inform. 2012, 31, 114-122.
  132. I. Roy, M. N. Gupta, Freeze-drying of proteins: some emerging concerns, Biotechnol. Appl. Biochem. 2004, 39, 165-177.
  133. A. Riedel, M. Mehnert, C. E. Paul, A. H. Westphal, W. J. H. van Berkel, D. Tischler, Functional charac- terization and stability improvement of a 'thermophilic-like' ene-reductase from Rhodococcus opacus 1CP, Front. Microbiol. 2015, 6, 1-14.
  134. R. Fischer, S. Schillberg, S. Hellwig, R. M. Twyman, J. Drossard, GMP issues for recombinant plant- derived pharmaceutical proteins, Biotechnol. Adv. 2012, 30, 434-439.
  135. M. Biermann, H. Gruß, W. Hummel, H. Gröger, Guerbet Alcohols: From Processes under Harsh Condi- tions to Synthesis at Room Temperature under Ambient Pressure, ChemCatChem 2016, 8, 895-899.
  136. S. Litthauer, S. Gargiulo, E. van Heerden, F. Hollmann, D. J. Opperman, Heterologous expression and characterization of the ene-reductases from Deinococcus radiodurans and Ralstonia metallidurans, J. Mol.
  137. P. A. Fitzpatrick, A. M. Klibanov, How can the solvent affect enzyme enantioselectivity?, J. Am. Chem.
  138. J. Basran, R. J. Harris, M. J. Sutcliffe, N. S. Scrutton, H-tunneling in the Multiple H-transfers of the Cata- lytic Cycle of Morphinone Reductase and in the Reductive Half-reaction of the Homologous Pentaerythritol Tetranitrate Reductase, J. Biol. Chem. 2003, 278, 43973-43982.
  139. V. M. Mokhov, Y. V. Popov, D. N. Nebykov, Hydrogenation of alkenes over nickel nanoparticles under atmospheric pressure of hydrogen, Russ. J. Org. Chem. 2016, 52, 319-323.
  140. M.-Y. Xu, X.-Q. Pei, Z.-L. Wu, Identification and characterization of a novel "thermophilic-like" Old Yellow Enzyme from the genome of Chryseobacterium sp. CA49, J. Mol. Catal. B: Enzym. 2014, 108, 64-71.
  141. C. Peters, R. Kölzsch, M. Kadow, L. Skalden, F. Rudroff, M. D. Mihovilovic, U. T. Bornscheuer, Iden- tification, Characterization, and Application of Three Enoate Reductases from Pseudomonas putida in In Vitro Enzyme Cascade Reactions, ChemCatChem 2014, 6, 1021-1027.
  142. G. Steinkellner, C. C. Gruber, T. Pavkov-Keller, A. Binter, K. Steiner, C. Winkler, A. Lyskowski, O. Schwamberger, M. Oberer, H. Schwab, K. Faber, P. Macheroux, K. Gruber, Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations, Nat Comms 2014, 5, 4150.
  143. U. T. Bornscheuer, M. Pohl, Improved biocatalysts by directed evolution and rational protein design, Curr. Opin. Chem. Biol. 2001, 5, 137-143.
  144. A. B. Daugherty, S. Govindarajan, S. Lutz, Improved biocatalysts from a synthetic circular permutation library of the flavin-dependent oxidoreductase old yellow enzyme, J. Am. Chem. Soc. 2013, 135, 14425-14432.
  145. R. J. Fox, S. C. Davis, E. C. Mundorff, L. M. Newman, V. Gavrilovic, S. K. Ma, L. M. Chung, C. Ching, S. Tam, S. Muley, J. Grate, J. Gruber, J. C. Whitman, R. A. Sheldon, G. W. Huisman, Improving catalytic function by ProSAR-driven enzyme evolution, Nat. Biotechnol. 2007, 25, 338-344.
  146. S. A. Busby, M. J. Chalmers, P. R. Griffin, Improving digestion efficiency under H/D exchange conditions with activated pepsinogen coupled columns, Int. J. Mass Spectrom. 2007, 259, 130-139.
  147. K. L. Morley, R. J. Kazlauskas, Improving enzyme properties: when are closer mutations better?, Trends Biotechnol. 2005, 23, 231-237.
  148. A. M. Klibanov, Improving enzymes by using them in organic solvents, Nature 2001, 409, 241-246.
  149. M. R. Dunn, C. Otto, K. E. Fenton, J. C. Chaput, Improving Polymerase Activity with Unnatural Sub- strates by Sampling Mutations in Homologous Protein Architectures, ACS Chem. Biol. 2016, 11, 1210-1219.
  150. J.-M. Choi, S.-S. Han, H.-S. Kim, Industrial applications of enzyme biocatalysis: Current status and future aspects, Biotechnol. Adv. 2015, 33, 1443-1454.
  151. S. Wenda, S. Illner, A. Mell, U. Kragl, Industrial biotechnology-the future of green chemistry?, Green Chem. 2011, 13, 3007.
  152. M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Kesseler, R. Stürmer, T. Zelinski, Industrial methods for the production of optically active intermediates, Angew. Chem. Int. Ed. Engl. 2004, 43, 788-824.
  153. N. B. Johnson, I. C. Lennon, P. H. Moran, J. A. Ramsden, Industrial-scale synthesis and applications of asymmetric hydrogenation catalysts, Acc. Chem. Res. 2007, 40, 1291-1299.
  154. E. Brenna, G. Fronza, C. Fuganti, F. Parmeggiani, Investigation of the stereochemical course of ene reduc- tase-catalysed reactions by deuterium labelling, Isotopes Environ. Health Stud. 2015, 51, 1-9.
  155. N. Tsuji, K. Honda, M. Wada, K. Okano, H. Ohtake, Isolation and characterization of a thermotolerant ene reductase from Geobacillus sp. 30 and its heterologous expression in Rhodococcus opacus, Appl. Microbiol.
  156. C. Acevedo-Rocha, S. Hoebenreich, M. Reetz, Iterative Saturation Mutagenesis: A Powerful Approach to Engineer Proteins by Systematically Simulating Darwinian Evolution in Directed Evolution Library Creation, Methods in Molecular Biology; (Eds. E. M. Gillam, J. N. Copp, D. Ackerley), Springer New York, 2014, 103-128.
  157. M. T. Reetz, J. D. Carballeira, Iterative saturation mutagenesis (ISM) for rapid directed evolution of func- tional enzymes, Nat. Protoc. 2007, 2, 891-903.
  158. M. T. Reetz, J. D. Carballeira, A. Vogel, Iterative saturation mutagenesis on the basis of B factors as a strat- egy for increasing protein thermostability, Angew. Chem. Int. Ed. 2006, 45, 7745-7751.
  159. P. Müller, M. Ahmad, Light-activated cryptochrome reacts with molecular oxygen to form a flavin- superoxide radical pair consistent with magnetoreception, J. Biol. Chem. 2011, 286, 21033-21040.
  160. M. K. Peers, H. S. Toogood, D. J. Heyes, D. Mansell, B. J. Coe, N. S. Scrutton, Light-driven biocatalytic reduction of α,β-unsaturated compounds by ene reductases employing transition metal complexes as photosensi- tizers, Catal. Sci. Technol. 2016, 6, 169-177.
  161. S. Reich, B. M. Nestl, B. Hauer, Loop Grafted Old Yellow Enzymes in the Bienzymatic Cascade Reduction of Allylic Alcohols, ChemBioChem 2016, 17, 561-565.
  162. M. J. Burk, F. Bienewald, S. Challenger, A. Derrick, J. A. Ramsden, Me-DuPHOS-Rh-Catalyzed Asym- metric Synthesis of the Pivotal Glutarate Intermediate for Candoxatril, J. Org. Chem. 1999, 64, 3290-3298.
  163. J. W. Yang, M. Hechavarria Fonseca, N. Vignola, B. List, Metal-free, organocatalytic asymmetric transfer hydrogenation of alpha,beta-unsaturated aldehydes, Angew. Chem. Int. Ed. 2004, 44, 108-110.
  164. J. W. Yang, M. Hechavarria Fonseca, N. Vignola, B. List, Metal-Free, Organocatalytic Asymmetric Trans- fer Hydrogenation of α,β-Unsaturated Aldehydes, Angew. Chem. Int. Ed. 2005, 117, 110-112.
  165. C. E. Paul, S. Gargiulo, D. J. Opperman, I. Lavandera, V. Gotor-Fernández, V. Gotor, A. Taglieber, I. W. C. E. Arends, F. Hollmann, Mimicking nature: synthetic nicotinamide cofactors for C═C bioreduction us- ing enoate reductases, Org. Lett. 2013, 15, 180-183.
  166. B. R. Miller, T. D. McGee, J. M. Swails, N. Homeyer, H. Gohlke, A. E. Roitberg, An Efficient Program for End-State Free Energy Calculations, J. Chem. Theory Comput. 2012, 8, 3314-3321.
  167. A. Airaksinen, T. Hovi, Modified base compositions at degenerate positions of a mutagenic oligonucleotide enhance randomness in site-saturation mutagenesis, Nucleic Acids Res. 1998, 26, 576-581.
  168. H. Lodish, Molecular cell biology: Section 3.3, Functional Design of Proteins.; Freeman, New York, NY, 2002.
  169. F. Schaller, E. W. Weiler, Molecular Cloning and Characterization of 12-Oxophytodienoate Reductase, an Enzyme of the Octadecanoid Signaling Pathway from Arabidopsis thaliana, J. Biol. Chem. 1997, 272, 28066- 28072.
  170. M. Norin, F. Haeffner, K. Hult, O. Edholm, Molecular dynamics simulations of an enzyme surrounded by vacuum, water, or a hydrophobic solvent, Biophys. J. 1994, 67, 548-559.
  171. J. G. Gober, A. E. Rydeen, E. J. Gibson-O'Grady, J. B. Leuthaeuser, J. S. Fetrow, E. M. Brustad, Mutat- ing a Highly Conserved Residue in Diverse Cytochrome P450s Facilitates Diastereoselective Olefin Cyclopropa- nation, ChemBioChem 2016, 17, 394-397.
  172. C. K. Winkler, D. Clay, M. Entner, M. Plank, K. Faber, NAD(P)H-independent asymmetric C=C bond reduction catalyzed by ene reductases by using artificial co-substrates as the hydrogen donor, Chem. Eur. J. 2014, 20, 1403-1409.
  173. H. Jochens, U. T. Bornscheuer, Natural diversity to guide focused directed evolution, ChemBioChem 2010, 11, 1861-1866.
  174. R. E. Williams, N. C. Bruce, 'New uses for an Old Enzyme'-the Old Yellow Enzyme family of flavoen- zymes, Microbiology 2002, 148, 1607-1614.
  175. C. Stueckler, T. C. Reiter, N. Baudendistel, K. Faber, Nicotinamide-independent asymmetric bioreduction of CC-bonds via disproportionation of enones catalyzed by enoate reductases, Tetrahedron 2010, 66, 663-667.
  176. M. Bühler, H. Giesel, W. Tischer, H. Simon, Occurrence and the possible physiological role of 2-enoate reductases, FEBS Letters 1980, 109, 244-246.
  177. A. D. Vaz, S. Chakraborty, V. Massey, Old yellow enzyme: Aromatization of cyclic enones and the mecha- nism of a novel dismutation reaction, Biochemistry 1995, 34, 4246-4256.
  178. K. M. Fox, P. Karplus, Old yellow enzyme at 2 Å resolution: overall structure, ligand binding, and compari- son with related flavoproteins, Structure 1994, 2, 1089-1105.
  179. A. Scholtissek, D. Tischler, A. Westphal, W. van Berkel, C. Paul, Old Yellow Enzyme-Catalysed Asym- metric Hydrogenation, Catalysts 2017, 7, 130.
  180. M. Schittmayer, A. Glieder, M. K. Uhl, A. Winkler, S. Zach, J. H. Schrittwieser, W. Kroutil, P. Macheroux, K. Gruber, S. Kambourakis, J. D. Rozzell, M. Winkler, Old Yellow Enzyme-Catalyzed Dehy- drogenation of Saturated Ketones, Adv. Synth. Catal. 2011, 353, 268-274.
  181. D. J. Bougioukou, J. D. Stewart, Opposite stereochemical courses for enzyme-mediated alkene reductions of an enantiomeric substrate pair, J. Am. Chem. Soc. 2008, 130, 7655-7658.
  182. C. Zhang, D. K. Schneiderman, T. Cai, Y.-S. Tai, K. Fox, K. Zhang, Optically Active β-Methyl-δ- Valerolactone, ACS Sustainable Chem. Eng. 2016, 4, 4396-4402.
  183. M. T. Ru, J. S. Dordick, J. A. Reimer, D. S. Clark, Optimizing the salt-induced activation of enzymes in organic solvents: Effects of lyophilization time and water content, Biotechnol. Bioeng. 1999, 63, 233-241.
  184. H. J. Reich, J. M. Renga, I. L. Reich, Organoselenium chemistry. Conversion of ketones to enones by sele- noxide syn elimination, J. Am. Chem. Soc. 1975, 97, 5434-5447.
  185. C. K. Winkler, D. Clay, E. van Heerden, K. Faber, Overcoming co-product inhibition in the nicotinamide independent asymmetric bioreduction of activated C=C-bonds using flavin-dependent ene-reductases, Biotech- nol. Bioeng. 2013, 110, 3085-3092.
  186. W. A. Poucher, Perfumes, Cosmetics and Soaps: Volume I The Raw Materials of Perfumery;
  187. G. Moschini, Pharmaceutical And Industrial Traits In Genetically Modified Crops:Coexistence With Con- ventional Agriculture, Amer. J. Agr. Econ. 2006, 88, 1184-1192.
  188. A. Patterson-Orazem, B. Sullivan, J. D. Stewart, Pichia stipitis OYE 2.6 variants with improved catalytic efficiencies from site-saturation mutagenesis libraries, Bioorg. Med. Chem. 2014, 22, 5628-5632.
  189. K. Lee, J. Neff, Eds, Produced Water: Environmental Risks and Advances in Mitigation Technologies, Measurement of Oil in Produced Water;
  190. M. Wada, A. Yoshizumi, Y. Noda, M. Kataoka, S. Shimizu, H. Takagi, S. Nakamori, Production of a Doubly Chiral Compound, (4R,6R)-4-Hydroxy-2,2,6-Trimethylcyclohexanone, by Two-Step Enzymatic Asym- metric Reduction, Appl. Environ. Microbiol. 2003, 69, 933-937.
  191. G. Carrea, S. Riva, Properties and Synthetic Applications of Enzymes in Organic Solvents, Angew. Chem. Int. Ed. 2000, 39, 2226-2254.
  192. A. S. Bommarius, Protein engineering: Check nature first, then evolve, Nat. Chem. Biol. 2010, 6, 793-794.
  193. S. Kille, M. T. Reetz, Protein Engineering: Development of Novel Enzymes for the Improved Reduction of C=C Double Bonds in Synthetic Methods for Biologically Active Molecules. Exploring the Potential of Bioreduc- tions; (Ed. E. Brenna), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013, 113-138.
  194. J. D. Bloom, S. T. Labthavikul, C. R. Otey, F. H. Arnold, Protein stability promotes evolvability, Proc. Natl. Acad. Sci. USA 2006, 103, 5869-5874.
  195. A. S. Abramovitz, V. Massey, Purification of Intact Old Yellow Enzyme Using Affinity Matrix for the Sole Chromatographic Step, J. Biol. Chem. 1976, 251, 5321-5326.
  196. L. T. Quertinmont, R. Orru, S. Lutz, RApid Parallel Protein EvaluatoR (RAPPER), from gene to enzyme function in one day, Chem. Commun. 2015, 51, 122-124.
  197. M. Höhne, S. Schätzle, H. Jochens, K. Robins, U. T. Bornscheuer, Rational assignment of key motifs for function guides in silico enzyme identification, Nat. Chem. Biol. 2010, 6, 807-813.
  198. A. Seifert, S. Vomund, K. Grohmann, S. Kriening, V. B. Urlacher, S. Laschat, J. Pleiss, Rational design of a minimal and highly enriched CYP102A1 mutant library with improved regio-, stereo-and chemoselectivity, ChemBioChem 2009, 10, 853-861.
  199. H. Yang, L. Liu, J. Li, J. Chen, G. Du, Rational Design to Improve Protein Thermostability: Recent Advances and Prospects, ChemBioEng Rev. 2015, 2, 87-94.
  200. V. Massey, L. M. Schopfer, Reactivity of old yellow enzyme with alpha-NADPH and other pyridine nucleo- tide derivatives, J. Biol. Chem. 1986, 261, 1215-1222.
  201. M. Eckstein, T. Daußmann, U. Kragl, Recent Developments in NAD(P)H Regeneration for Enzymatic Reductions in One-and Two-Phase Systems, Biocatal. Biotransform. 2009, 22, 89-96.
  202. E. Burda, M. Kraußer, G. Fischer, W. Hummel, F. Müller-Uri, W. Kreis, H. Gröger, Recombinant Δ 4,5 - Steroid 5β-Reductases as Biocatalysts for the Reduction of Activated C=C-Double Bonds in Monocyclic and Acyclic Molecules, Adv. Synth. Catal. 2009, 351, 2787-2790.
  203. B. Dominguez, U. Schell, S. Bisagni, T. Kalthoff, Reduction of Activated Carbon-Carbon Double Bonds using Highly Active and Enantioselective Double Bond Reductases, Johnson Matthey Technol. Rev. 2016, 60, 243-249.
  204. R. Lonsdale, M. T. Reetz, Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations, J. Am. Chem. Soc. 2015, 137, 14733- 14742.
  205. A. Z. Walton, B. Sullivan, A. C. Patterson-Orazem, J. D. Stewart, Residues Controlling Facial Selectivity in an Alkene Reductase and Semirational Alterations to Create Stereocomplementary Variants, ACS Catal. 2014, 4, 2307-2318.
  206. N. Nett, S. Duewel, A. A. Richter, S. Hoebenreich, Revealing Additional Stereocomplementary Pairs of Old Yellow Enzymes by Rational Transfer of Engineered Residues, ChemBioChem 2017, 18, 685-691.
  207. D. Suplatov, V. Voevodin, V. Svedas, Robust enzyme design: bioinformatic tools for improved protein stability, Biotechnol. J. 2015, 10, 344-355.
  208. C. Stueckler, C. K. Winkler, M. Bonnekessel, K. Faber, Asymmetric Synthesis of ®-3-Hydroxy-2- methylpropanoate ('Roche Ester') and Derivatives via Biocatalytic C-C-Bond Reduction, Adv. Synth. Catal. 2010, 352, 2663-2666.
  209. C. Laane, S. Boeren, K. Vos, C. Veeger, Rules for optimization of biocatalysis in organic solvents, Bio- technol. Bioeng. 1987, 30, 81-87.
  210. T. J. Schwartz, S. D. Lyman, A. H. Motagamwala, M. A. Mellmer, J. A. Dumesic, Selective Hydrogena- tion of Unsaturated Carbon-Carbon Bonds in Aromatic-Containing Platform Molecules, ACS Catal. 2016, 6, 2047-2054.
  211. S. K. Padhi, D. J. Bougioukou, J. D. Stewart, Site-saturation mutagenesis of tryptophan 116 of Saccharomy- ces pastorianus old yellow enzyme uncovers stereocomplementary variants, J. Am. Chem. Soc. 2009, 131, 3271-3280.
  212. G. Cainelli, P. Galletti, D. Giacomini, Solvent effects on stereoselectivity: more than just an environment, Chem. Soc. Rev. 2009, 38, 990-1001.
  213. J. T. Wu, L. H. Wu, J. A. Knight, Stability of NADPH, Clin. Chem. 1986, 32, 314-319.
  214. A. S. Bommarius, M. F. Paye, Stabilizing biocatalysts, Chem. Soc. Rev. 2013, 42, 6534-6565.
  215. A. S. Bommarius, J. K. Blum, M. J. Abrahamson, Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst, Curr. Opin. Chem. Biol. 2011, 15, 194-200.
  216. C. Stueckler, M. Hall, H. Ehammer, E. Pointner, W. Kroutil, P. Macheroux, K. Faber, Stereocomple- mentary bioreduction of alpha,beta-unsaturated dicarboxylic acids and dimethyl esters using enoate reductases: enzyme-and substrate-based stereocontrol, Org. Lett. 2007, 9, 5409-5411.
  217. J. G. de Vries, Ed, Stereoselective Synthesis 1: Hydrogenation of Carbon-Carbon Double Bonds;
  218. P. Gramatica, P. Manitto, D. Monti, G. Speranza, Stereoselective total synthesis of natural phytol double bond reductions by baker's yeast, Tetrahedron 1987, 43, 4481-4486.
  219. A. Müller, R. Stürmer, B. Hauer, B. Rosche, Stereospecific Alkyne Reduction, Angew. Chem. Int. Ed. 2007, 46, 3316-3318.
  220. B. Rambeck, H. Simon, Stereospecific Hydrogenation of ®-or (S)-2-Ethyl-4-phenylallenecarboxylic Acid to cis-or trans-2-Ethyl-4-phenyl-3-butenecarboxylic Acid by Means of Clostridium kluyveri, Angew. Chem. Int.
  221. T. Hirata, A. Matsushima, Y. Sato, T. Iwasaki, H. Nomura, T. Watanabe, S. Toyoda, S. Izumi, Stereo- specific hydrogenation of the CC double bond of enones by Escherichia coli overexpressing an enone reductase of Nicotiana tabacum, J. Mol. Catal. B: Enzym. 2009, 59, 158-162.
  222. E. Brenna, F. G. Gatti, A. Manfredi, D. Monti, F. Parmeggiani, Steric Effects on the Stereochemistry of Old Yellow Enzyme-Mediated Reductions of Unsaturated Diesters: Flipping of the Substrate within the Enzyme Active Site Induced by Structural Modifications, Adv. Synth. Catal. 2012, 354, 2859-2864.
  223. E. Brenna, M. Crotti, F. G. Gatti, D. Monti, F. Parmeggiani, R. W. Powell, S. Santangelo, J. D. Stew- art, Opposite Enantioselectivity in the Bioreduction of (Z )-β-Aryl-β-cyanoacrylates Mediated by the Trypto- phan 116 Mutants of Old Yellow Enzyme 1, Adv. Synth. Catal. 2015, 357, 1849-1860.
  224. Y. A. Pompeu, B. Sullivan, A. Z. Walton, J. D. Stewart, Structural and Catalytic Characterization of Pichia stipitis OYE 2.6, a Useful Biocatalyst for Asymmetric Alkene Reductions, Adv. Synth. Catal. 2012, 354, 1949-1960.
  225. A. B. Daugherty, J. R. Horton, X. Cheng, S. Lutz, Structural And Functional Consequences Of Circular Permutation On The Active Site Of Old Yellow Enzyme, ACS Catal. 2015, 5, 892-899.
  226. T. B. Fitzpatrick, S. Auweter, K. Kitzing, T. Clausen, N. Amrhein, P. Macheroux, Structural and func- tional impairment of an Old Yellow Enzyme homologue upon affinity tag incorporation, Protein Expr. Purif. 2004, 36, 280-291.
  227. Stephens, N. S. Scrutton, Structure-Based Insight into the Asymmetric Bioreduction of the C=C Double Bond of α,β-Unsaturated Nitroalkenes by Pentaerythritol Tetranitrate Reductase, Adv. Synth. Catal. 2008, 350, 2789-2803.
  228. P. A. Karplus, K. M. Fox, V. Massey, Flavoprotein structure and mechanism. 8. Structure-function rela- tions for old yellow enzyme, The FASEB Journal 1995, 9, 1518-1526.
  229. E. Brenna, F. G. Gatti, D. Monti, F. Parmeggiani, A. Sacchetti, J. Valoti, Substrate-engineering approach to the stereoselective chemo-multienzymatic cascade synthesis of Nicotiana tabacum lactone, J. Mol. Catal. B: Enzym. 2015, 114, 77-85.
  230. H. G. W. Leuenberger, W. Boguth, E. Widmer, R. Zell, Synthese von optisch aktiven, natürlichen Carotinoiden und strukturell verwandten Naturprodukten. I. Synthese der chiralen Schlüsselverbindung (4R, 6R)-4-Hydroxy-2,2,6-trimethylcyclohexanon, Helv. Chim. Acta 1976, 59, 1832-1849.
  231. T. Breiding, J. Henker, C. Fu, Y. Xiang, S. Glöckner, P. Hofmann, K. Harms, E. Meggers, Synthesis and Functionalization of Hexacoordinate (Arenediolato)bis(polypyridyl)silicon(IV) Complexes, Eur. J. Inorg.
  232. L. Skalden, C. Peters, L. Ratz, U. T. Bornscheuer, Synthesis of (1R,3R)-1-amino-3-methylcyclohexane by an enzyme cascade reaction, Tetrahedron 2016, 72, 7207-7211.
  233. X. Chen, X. Gao, Q. Wu, D. Zhu, Synthesis of optically active dihydrocarveol via a stepwise or one-pot enzymatic reduction of ®-and (S)-carvone, Tetrahedron: Asymmetry 2012, 23, 734-738.
  234. T. Knaus, F. G. Mutti, L. D. Humphreys, N. J. Turner, N. S. Scrutton, Systematic methodology for the development of biocatalytic hydrogen-borrowing cascades: application to the synthesis of chiral α-substituted carboxylic acids from α-substituted α,β-unsaturated aldehydes, Org. Biomol. Chem. 2014, 13, 223-233.
  235. K. Kitzing, T. B. Fitzpatrick, C. Wilken, J. Sawa, G. P. Bourenkov, P. Macheroux, T. Clausen, The 1.3 Å crystal structure of the flavoprotein YqjM reveals a novel class of Old Yellow Enzymes, J. Biol. Chem. 2005, 280, 27904-27913.
  236. I. C. Lennon, C. J. Pilkington, The Application of Asymmetric Hydrogenation for the Manufacture of Phar- maceutical Intermediates: The Need for Catalyst Diversity, Synthesis 2003, 11, 1639-1642.
  237. S. Martínez Cuesta, S. A. Rahman, N. Furnham, J. M. Thornton, The Classification and Evolution of Enzyme Function, Biophys. J. 2015, 109, 1082-1086.
  238. K. Saito, D. J. Thiele, M. Davio, O. Lockridge, V. Massey, The cloning and expression of a gene encoding Old Yellow Enzyme from Saccharomyces carlsbergensis, J. Biol. Chem. 1991, 266, 20720-20724.
  239. S. O. Mansoorabadi, C. J. Thibodeaux, H.-W. Liu, The diverse roles of flavin coenzymes-nature's most versatile thespians, J. Org. Chem. 2007, 72, 6329-6342.
  240. W. Li, A. Cowley, M. Uludag, T. Gur, H. McWilliam, S. Squizzato, Y. M. Park, N. Buso, R. Lopez, The EMBL-EBI bioinformatics web and programmatic tools framework, Nucleic Acids Res. 2015, 43, W580- W584.
  241. W. H. de Camp, The FDA perspective on the development of stereoisomers, Chirality 1989, 1, 2-6.
  242. D. R. Headon, G. Walsh, The Industrial Production Of Enzymes, Biotechnol. Adv. 1994, 12, 635-646.
  243. A. Martin, V. Orgogozo, The Loci of repeated evolution: a catalog of genetic hotspots of phenotypic varia- tion, Evolution 2013, 67, 1235-1250.
  244. N. Ono, H. Feuer, The Nitro Group in Organic Synthesis;
  245. T. Reß, W. Hummel, S. P. Hanlon, H. Iding, H. Gröger, The Organic-Synthetic Potential of Recombinant Ene Reductases: Substrate-Scope Evaluation and Process Optimization, ChemCatChem 2015, 7, 1302-1311.
  246. Q. H. Gibson, J. W. Hastings, The oxidation of reduced flavin mononucleotide by molecular oxygen, Bio- chem. J. 1962, 83, 368-377.
  247. R. M. Kohli, The Oxidative Half-reaction of Old Yellow Enzyme. The Role Of Tyrosine 196, J. Biol. Chem. 1998, 273, 32763-32770.
  248. B. J. Brown, J.-W. Hyun, S. Duvvuri, P. A. Karplus, V. Massey, The role of glutamine 114 in old yellow enzyme, J. Biol. Chem. 2002, 277, 2138-2145.
  249. D. Xu, R. M. Kohli, V. Massey, The role of threonine 37 in flavin reactivity of the old yellow enzyme, Proc. Natl. Acad. Sci. USA 1999, 96, 3556-3561.
  250. D. Houde, S. A. Berkowitz, J. R. Engen, The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies, J. Pharm. Sci. 2011, 100, 2071-2086.
  251. D. J. Bougioukou, A. Z. Walton, J. D. Stewart, Towards preparative-scale, biocatalytic alkene reductions, Chem. Commun. 2010, 46, 8558-8560.
  252. M. Boudart, Turnover Rates in Heterogeneous Catalysis, Chem. Rev. 1995, 95, 661-666.
  253. X.-Q. Pei, M.-Y. Xu, Z.-L. Wu, Two "classical" Old Yellow Enzymes from Chryseobacterium sp. CA49, J. Mol. Catal. B: Enzym. 2015, 123, 91-99.
  254. W. Frank Shipe, Ullmann's Food and Feed, 3 Volume Set;
  255. H. Wang, H. Lian, J. Chen, Y. Pan, Y. Shi, Ultrasonic Accelerated Hydrogenation of Unsaturated Ketones with Raney Nickel Catalyst, Synth. Commun. 1999, 29, 129-134.
  256. K. Durchschein, M. Hall, K. Faber, Unusual reactions mediated by FMN-dependent ene-and nitro- reductases, Green Chem. 2013, 15, 1764.
  257. S. J. Wallace, Use of ethosuximide and valproate in the treatment of epilepsy, Neurol. Clin. 1986, 4, 601- 616.
  258. O. Vadas, M. L. Jenkins, G. L. Dornan, J. E. Burke, Using Hydrogen-Deuterium Exchange Mass Spec- trometry to Examine Protein-Membrane Interactions, Meth. Enzymol. 2017, 583, 143-172.
  259. S. P. Edgcomb, K. P. Murphy, Variability in the pKa of histidine side-chains correlates with burial within proteins, Proteins: Struct, Funct, Bioinf. 2002, 49, 1-6.
  260. H. Li, A. D. Robertson, J. H. Jensen, Very fast empirical prediction and rationalization of protein pKa val- ues, Proteins 2005, 61, 704-721.
  261. Y. A. Pompeu, B. Sullivan, J. D. Stewart, X-ray Crystallography Reveals How Subtle Changes Control the Orientation of Substrate Binding in an Alkene Reductase, ACS Catal. 2013, 3, 2376-2390.
  262. O. Warburg, W. Christian, Yellow enzymes, Biochem. Ztschr. 1933, 266, 377-411.

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten