Publikationsserver der Universitätsbibliothek Marburg

Titel:Reduktion der Spannungsentwicklung von Kompositfüllungen durch neue Methoden der Steuerung der Lichtpolymerisation
Autor:Kusch, Malte
Weitere Beteiligte: Gente, Michael (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0756
URN: urn:nbn:de:hebis:04-z2017-07569
DOI: https://doi.org/10.17192/z2017.0756
DDC:610 Medizin
Publikationsdatum:2017-12-19
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
Photoinitiators, Composite resin, Polymerisationslampen, Komposit <Zahnmedizin>, Light-curing of dental adhesives, Spannungsreduktion, Photopolymerisation, Komposit, curing lights, Photoinitiatoren

Zusammenfassung:
Die Polymerisationsschrumpfung und die daraus resultie-renden Spannungen im Zahn stellen auch heute noch eine erhebliche, bis jetzt ungelöste Herausforderung dar. Es wurden die polymerisationsschrumpfbedingten Span-nungen verschiedener Füllungsmethoden untersucht. Zur Ermittlung diente die spannungsoptische Methode. Anhand eines Bulk-Fill Komposits verglich man die Spannungen der klassischen Bulk-Technik und der Schichttechnik mit zwei neuen Füllungsmethoden. Die neuen Methoden beruhen auf dem Einsatz einer speziellen Polymerisationslampe mit zwei verschiedenen Wellenlängen, die zeitlich versetzt zwei Fotoinitiatoren unterschiedlicher Konzentration aktivieren und somit erst zu einer Vorgelierung und dann zur End-härtung führen. Die Spannungsbilder nach 1000s wurden mithilfe von ImageJ ausgewertet und die an den Kavitäten-wänden entstandenen Spannungen in Excel extrapoliert. Die entstehenden Spannungen können auch bei Bulk-Fill Kompositen durch die Schichttechnik, verglichen mit der Bulk-Technik, deutlich gesenkt werden. Dabei spielt die Geometrie der Schichten eine untergeordnete Rolle. Die erste neue Methode ist in etwa genau so effizient wie die Schichttechnik, erspart dem Behandler jedoch den zeit-lichen Aufwand des Schichtens. Die zweite neue Methode ist noch deutlich effizienter. Die neuen Methoden stehen noch am Anfang und bedürfen technischer Verfeinerung. Die Ergebnisse sind jedoch viel-versprechend und sollten weiter verbessert, untersucht und praxisnah anwendbar gemacht werden.

Summary:
Objectives: The polymerization shrinkage stress of various filling methods was examined by means of a photo-elastic investigation. Using a flowable bulk-fill composite (x-tra base/VOCO), the bulk- and incremental technique were compared with two new methods. The aim of this study was to develope new filling methods to reduce shrinkage stress without any additional time requirement. Methods: The two new methods are based on the use of a special curing light with two different wavelenghts, which allows the activation of two photoinitiators of different concentration with a time delay and thus leads first to a pre-gelation and then to final curing. In the first new method, bulk-fillings with this mixture were pre-cured and then final cured. In the second new method, a stress breaking layer was applied and pre-cured. Before the stress breaking layer is final cured, the rest of the cavity is filled and final cured. Class-I-Cavities (5x5x5 mm) in Araldit-B epoxy resin plates (35x35x5mm) were pretreated with Al2O3-particles (∅110 µm) and Adhese Universal (Ivoclar Vivadent) to ensure bonding of resin composites. All cavities were filled up to 4 mm. Polymerization stress data (MPa) 1000 s post exposure were calculated based on the diameter of the isochromatic rings using ImageJ and extrapolated in Excel. The statistical analysis of the obtained data was carried out with the Mann-Whitney U-test (p<0.05). Results: After 1000s the following mean stress values and standard deviations were obtained: bulk: 12.84 ± 0.61 MPa; incremental: 7.49 ± 0.60 MPa; first new method: 7.84 ± 0.41 MPa; second new method: 5.24 ± 0.64 MPa. Conclusions: Both new methods and the incremental-technique showed significantly less polymerization shrinkage stress than the bulk-technique. There was no significant difference between the incremental technique and the first new method, but the incremental technique needed a higher expenditure of time. The second new method significantly showed the lowest stress values. The new methods are promising but still in the beginning and therefore require technical refinement. They should be further improved, investigated and applied in practice.

Bibliographie / References

  1. Jandt, K. D., & Mills, R. W. (2013). A brief history of LED photopolymerizati- on. Dental Materials : Official Publication of the Academy of Dental Materials, 29(6), 605-17.
  2. Lutz, F., Phillips, R.W. (1983). A classification and evaluation of composite resin systems. J Prosthet Dent 1983;50:480-488.
  3. Frankenberger, R. (2013). Adhäsive Zahnheilkunde. Deutscher Zahnärzte Verlag.
  4. Yoshikawa, T., Burrow, M. F., & Tagami, J. (2001). A light curing method for improving marginal sealing and cavity wall adaptation of resin composite resto- rations. Dental Materials : Official Publication of the Academy of Dental Mate- rials, 17(4), 359-66.
  5. Shintani, H., Inoue, T., & Yamaki, M. (1985). Analysis of camphorquinone in visible light-cured composite resins. Dental Materials, 1(4), 124-126.
  6. Benzoyl germanium derivatives as novel visible light photoinitiators for dental materials. Dental Materials, 24(7), 901-907.
  7. Manhart, J., Chen, H. Y., & Hickel, R. (2003). Überlebenszeitanalyse von konservierend-zahnärztlichen Restaurationen -Teil I: Direkte Füllungen aus Komposit und Kompomer im Seitenzahnbereich. ZWR -Das Deutsche Zahnärz- teblatt, 112(4), 142-155.
  8. BisGMA/TEGDMA ratio and filler content effects on shrinkage stress. Dental Materials : Official Publication of the Academy of Dental Materials, 27(6), 520- 6.
  9. Ilie, N., Rosentritt, M., & Lohbauer, U. (2016). Bulk-Fill-Komposite. ZWR - Das Deutsche Zahnärzteblatt, 125(10), 492-497.
  10. Ferracane, J. L. (2008). Buonocore Lecture. Placing dental composites--a stressful experience. Operative Dentistry, 33(3), 247-57.
  11. Manhart, J. (2006). Charakterisierung direkter zahnärztlicher Füllungsmateria- lien für den Seitenzahnbereich -Alternativen zum Amalgam? Die Quintessenz 2006; 57 (5): 465-481
  12. Manhart, J., Chen, H.-Y., & Hickel, R. (2010). Clinical evaluation of the posterior composite Quixfil in class I and II cavities: 4-year follow-up of a rand- omized controlled trial. The Journal of Adhesive Dentistry, 12(3), 237-43.
  13. Clinical evaluation of the soft-start (pulse-delay) polymerization technique in Class I and II composite restorations. Operative Dentistry, 33(3), 265-271.
  14. Gao, B.-T., Lin, H., Zheng, G., Xu, Y.-X., & Yang, J.-L. (2012). Comparison between a silorane-based composite and methacrylate-based composites: Shrinkage characteristics, thermal properties, gel point and vitrification point. Dental Materials Journal, 31(1), 76-85.
  15. Kinomoto, Y., Torii, M., Takeshige, F., & Ebisu, S. (1999). Comparison of polymerization contraction stresses between self-and light-curing composites. Journal of Dentistry, 27(5), 383-9.
  16. Hadis, M. A., Shortall, A. C., & Palin, W. M. (2012). Competitive light absor- bers in photoactive dental resin-based materials. Dental Materials : Official Publication of the Academy of Dental Materials, 28(8), 831-41.
  17. Peutzfeldt, A., & Asmussen, E. (2002). Composite restorations: influence of flowable and self-curing resin composite linings on microleakage in vitro. Ope- rative Dentistry, 27(6), 569-75.
  18. Cunha, L. G., Alonso, R. C. B., Pfeifer, C. S. C., Correr-Sobrinho, L., Fer- racane, J. L., & Sinhoreti, M. A. C. (2008). Contraction stress and physical properties development of a resin-based composite irradiated using modulated curing methods at two C-factor levels. Dental Materials, 24(3), 392-398.
  19. Gonçalves, F., Kawano, Y., & Braga, R. R. (2010). Contraction stress related to composite inorganic content. Dental Materials : Official Publication of the Academy of Dental Materials, 26(7), 704-9.
  20. Lee, S.-Y., & Park, S.-H. (2006). Correlation between the amount of linear polymerization shrinkage and cuspal deflection. Operative Dentistry, 31(3), 364-70.
  21. Schuster, G. S. (1991). Correlation of cytotoxicity, filler loading and curing time of dental composites. Biomaterials, 12(8), 737-740.
  22. Moorthy, A., Hogg, C. H., Dowling, A. H., Grufferty, B. F., Benetti, A. R., & Fleming, G. J. P. (2012). Cuspal deflection and microleakage in premolar teeth restored with bulk-fill flowable resin-based composite base materials. Journal of Dentistry, 40(6), 500-5.
  23. Suliman, A. A., Boyer, D. B., & Lakes, R. S. (1993). Cusp movement in pre- molars resulting from composite polymerization shrinkage. Dental Materials, 9(1), 6-10.
  24. LEE Filters. Datasheet LEE Filter 124 Dark Green. LEE Filters Worldwide, Central Way, Walworth Busines Park, Andover, Hampshire, SP10 5AN, UK
  25. Pedalino, I., Hartup, G. R., & Vandewalle, K. S. (2015). Depth of cure of bulk-fill flowable composite resins. General Dentistry, 63(5), e28-34.
  26. Flury, S., Hayoz, S., Peutzfeldt, A., Hüsler, J., & Lussi, A. (2012). Depth of cure of resin composites: is the ISO 4049 method suitable for bulk fill materials? Dental Materials : Official Publication of the Academy of Dental Materials, 28(5), 521-8.
  27. Ernst, C. P., Meyer, G. R., Klöcker, K., & Willershausen, B. (2004). Determi- nation of polymerization shrinkage stress by means of a photoelastic investigati- on. Dental Materials, 20(4), 313-321.
  28. Ferracane, J. L. (2005). Developing a more complete understanding of stresses produced in dental composites during polymerization. Dental Materials, 21(1), 36-42.
  29. Park, Y. J., Chae, K. H., & Rawls, H. R. (1999). Development of a new photo- initiation system for dental light-cure composite resins. Dental Materials : Offi- cial Publication of the Academy of Dental Materials, 15(2), 120-7.
  30. Dauvillier, B. S., Aarnts, M. P., & Feilzer, A. J. (2000). Developments in shrinkage control of adhesive restoratives. J Esthet Dent, 12(6), 291-299.
  31. Baier, B. et al. (2010). Die Aushärtungstiefe von Komposit in Abhängigkeit von der applizierten Lichtdosis. Deutscher Zahnärztetag 2010; Posterpräsentation.
  32. Ghulman, M. A. (2011). Effect of cavity configuration (C factor) on the margi- nal adaptation of low-shrinking composite: a comparative ex vivo study. Inter- national Journal of Dentistry, 2011, 159749.
  33. Brandt, W. C., Schneider, L. F. J., Frollini, E., Correr-Sobrinho, L., & Sin- horeti, M. A. C. (2010). Effect of different photo-initiators and light curing units on degree of conversion of composites. Brazilian Oral Research, 24(3), 263- 270.
  34. Kwon, Y., Ferracane, J., & Lee, I.-B. (2012). Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dental Materials : Official Publication of the Academy of Dental Materials, 28(7), 801-9.
  35. Kwon, Y., Ferracane, J., & Lee, I.-B. (2012). Effect of layering methods, composite type, and flowable liner on the polymerization shrinkage stress of light cured composites. Dental Materials : Official Publication of the Academy of Dental Materials, 28(7), 801-9.
  36. Alomari, Q. D., & Mansour, Y. F. (2005). Effect of LED curing modes on cusp deflection and hardness of composite restorations. Operative Dentistry, 30(6), 684-9.
  37. Oliveira, L. C. A., Duarte, S., Araujo, C. A., & Abrahão, A. (2010). Effect of low-elastic modulus liner and base as stress-absorbing layer in composite resin restorations. Dental Materials, 26(3), 159-169.
  38. Sahafi, A., Peutzfeldt, A., & Asmussen, E. (2001). Effect of pulse-delay curing on in vitro wall-to-wall contraction of composite in dentin cavity preparations.
  39. Althaus, A. (2008). Eine Methode zur Verlängerung der Verarbeitungszeit von lichthärtendem Komposit. Med. Dissertation, Marburg 2008.
  40. Hellwig, E., Klimek, J., Attin, T. (2013). Einführung in die Zahnerhaltung. Deutscher Zahnärzte Verlag (6. Auflage, 2013)
  41. Hillmann, C. (2010). Einfluss einer Zementunterfüllung auf die marginale Qualität von Kompositfüllungen. Med. Dissertation, Erlangen, 2010.
  42. Dudda, S. (2014). Entwicklung eines neuen Applikationsverfahrens für fließfä- hige Komposite zur Reduktion polymerisationsbedingter Spannungen. Med. Dis- sertation, Marburg 2014.
  43. Klingler, K. (2004). Entwicklung und erste Anwendung einer spannungsopti- schen Messeinrichtung zur Beobachtung von polymerisationsschrumpfbedingten Spannungen. Med. Dissertation, Marburg, 2004.
  44. Albrecht, F. (2014). Evaluation der adhäsiven Leistungsfähigkeit eines innova- tiven Schichtkonzepts. Med. Dissertation, Erlangen 2014.
  45. Price, R. B. T., Felix, C. A., & Andreou, P. (2005). Evaluation of a dual peak third generation LED curing light. Compendium of Continuing Education in Dentistry (Jamesburg, N.J. : 1995), 26(5), 331-2, 334, 336-8 passim; quiz 348.
  46. Miyazaki, M., Hattori, T., Ichiishi, Y., Kondo, M., Onose, H., & Moore, B. K. (1998). Evaluation of curing units used in private dental offices. Operative Dentistry, 23(2), 50-4.
  47. Craig, R. G., El-Ebrashi, M. K., & Peyton, F. A. (1967). Experimental stress analysis of dental restorations. The Journal of Prosthetic Dentistry, 17(3), 292- 302.
  48. Braga, R. R., Ballester, R. Y., & Ferracane, J. L. (2005). Factors involved in the development of polymerization shrinkage stress in resin-composites: a sys- tematic review. Dental Materials : Official Publication of the Academy of Dental Materials, 21(10), 962-70.
  49. Schmidseder, J. (2009). Farbatlanten der Zahnmedizin -Ästhetische Zahnme- dizin. Georg Thieme Verlag (2. Auflage, 2009)
  50. Ernst, C. P., Busemann, I., Kern, T., & Willershausen, B. (2006). Feldtest zur Lichtemissionsleistung von Polymerisationsgeräten in zahnärztlichen Praxen. Dtsch Zahnärztl Z. 2006 Sep;61(9):466-471.
  51. VOCO GmbH, Cuxhaven, Deutschland (2013). Gebrauchsinformation x-tra base.
  52. Reiner, J. (2002). Grundlagen der ophthalmologischen Optik. Verlag: Books on Demand, 1. Auflage (23.04.2002),
  53. Park, J., Chang, J., Ferracane, J., & Lee, I. B. (2008). How should composite be layered to reduce shrinkage stress: incremental or bulk filling? Dental Mate- rials : Official Publication of the Academy of Dental Materials, 24(11), 1501-5.
  54. Lee, M.-R., Cho, B.-H., Son, H.-H., Um, C.-M., & Lee, I.-B. (2007). Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dental Materials : Official Publication of the Academy of Dental Materials, 23(3), 288-95.
  55. Lee, M. R., Cho, B. H., Son, H. H., Um, C. M., & Lee, I. B. (2007). Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dental Materials, 23(3), 288-295.
  56. Nikolaenko, S. A., Lohbauer, U., Roggendorf, M., Petschelt, A., Dasch, W. & Frankenberger, R. (2004). Influence of c-factor and layering technique on microtensile bond strength to dentin. Dental Materials, 20(6), 579-585.
  57. Asmussen, E., & Peutzfeldt, A. (2002). Influence of composition on rate of polymerization contraction of light-curing resin composites. Acta Odontologica Scandinavica, 60(3), 146-50.
  58. Consani, S. (2013). Influence of filling techniques on shrinkage stress in dental composite restorations. Journal of Dental Sciences, 8(1), 53-60.
  59. Chuang, S.-F., Jin, Y.-T., Liu, J.-K., Chang, C.-H., & Shieh, D.-B. (2004). Influence of flowable composite lining thickness on Class II composite restora- tions. Operative Dentistry, 29(3), 301-8.
  60. Influence of irradiant energy on degree of conversion, polymerization rate and shrinkage stress in an experimental resin composite system. Dental Materials, 24(9), 1164-1168.
  61. Gonçalves, F., Pfeifer, C. C. S., Stansbury, J. W., Newman, S. M., & Braga, R. R. (2010). Influence of matrix composition on polymerization stress develo- pment of experimental composites. Dental Materials, 26(7), 697-703.
  62. Kowalczyk, P. (2009). Influence of the shape of the layers in photo-cured dental restorations on the shrinkage stress peaks-FEM study. Dental Materials : Official Publication of the Academy of Dental Materials, 25(12), e83-91.
  63. Suliman, A. A., Boyer, D. B., & Lakes, R. S. (1993). Interferometric Measure- ments of Cusp Deformation of Teeth Restored with Composites. Dentistry, Oral Surgery & Medicine, 72(11), 1532-1536.
  64. Ilie, N., & Hickel, R. (2011). Investigations on a methacrylate-based flowable composite based on the SDR TM technology. Dental Materials : Official Publica- tion of the Academy of Dental Materials, 27(4), 348-55.
  65. Ilie, N., & Fleming, G. J. P. (2015). In vitro comparison of polymerisation kinetics and the micro-mechanical properties of low and high viscosity giomers and RBC materials. Journal of Dentistry, 43(7), 814-22.
  66. Palin, W. M., Fleming, G. J. P., Nathwani, H., Burke, F. J. T., & Randall, R. C. (2005). In vitro cuspal deflection and microleakage of maxillary premolars restored with novel low-shrink dental composites. Dental Materials, 21(4), 324- 335.
  67. Segura, A., & Donly, K. J. (1993). In vitro posterior composite polymerization recovery following hygroscopic expansion. Journal of Oral Rehabilitation, 20(5), 495-9.
  68. Lindberg, A., van Dijken, J. W. V, & Hörstedt, P. (2005). In vivo interfacial adaptation of class II resin composite restorations with and without a flowable resin composite liner. Clinical Oral Investigations, 9(2), 77-83.
  69. Price, R. B. T., Labrie, D., Rueggeberg, F. A., & Felix, C. M. (2010). Irradi- ance differences in the violet (405 nm) and blue (460 nm) spectral ranges among dental light-curing units. Journal of Esthetic and Restorative Dentistry, 22(6), 363-377.
  70. Burtscher, P. (2013). Ivocerin® im Vergleich zu Campherchinon. REPORT aus der Forschung und Entwicklung der Ivoclar Vivadent AG, Nr. 19, Juli 2013
  71. Ivoclar Vivadent AG. Lichtpolymerisation|specialfeature: Gut, wenn man die Fakten kennt.
  72. Light curing of resin-based composites in the LED era. American Journal of Dentistry, 21(3), 135-142.
  73. Sommer, A. P., & Gente, M. (1999). Light-induced control of polymerization shrinkage of dental composites by generating temporary hardness gradients. Bi- omedizinische Technik. Biomedical Engineering, 44(10), 290-3.
  74. Alomari, Q., Ajlouni, R., & Omar, R. (2007). Managing the polymerization shrinkage of resin composite restorations: a review. SADJ : Journal of the South African Dental Association = Tydskrif van Die Suid-Afrikaanse Tandheelkundige Vereniging, 62(1), 12, 14, 16 passim.
  75. Guimarães, T., Schneider, L. F., Braga, R. R., & Pfeifer, C. S. (2014). Map- ping camphorquinone consumption, conversion and mechanical properties in methacrylates with systematically varied CQ/amine compositions. Dental Mate- rials : Official Publication of the Academy of Dental Materials, 30(11), 1274-9.
  76. Roggendorf, M. J., Krämer, N., Appelt, A., Naumann, M., & Frankenberger, R. (2011). Marginal quality of flowable 4-mm base vs. conventionally layered resin composite. Journal of Dentistry, 39(10), 643-7.
  77. Manhart, J., Kunzelmann, K. H., Chen, H. Y., & Hickel, R. (2000). Mecha- nical properties and wear behavior of light-cured packable composite resins. Dental Materials : Official Publication of the Academy of Dental Materials, 16(1), 33-40.
  78. Amaral, C. M., Peris, A. R., Ambrosano, G. M. B., & Pimenta, L. A. F. (2004). Microleakage and gap formation of resin composite restorations poly- merized with different techniques. American Journal of Dentistry, 17(3), 156- 60.
  79. Yamazaki, P. C. V., Bedran-Russo, A. K. B., Pereira, P. N. R., & Swift, E. J. (2006). Microleakage evaluation of a new low-shrinkage composite restorative material. Operative Dentistry, 31(6), 670-676.
  80. Manhart, J. (2010). Neues Konzept zum Ersatz von Dentin in der kompositba- sierten Seitenzahnversorgung. ZWR -Das Deutsche Zahnärzteblatt, 119(3), 118- 125.
  81. Hickel R. (2012). Neueste Komposite -viele Behauptungen. BZB Bayerisches Zahnärzteblatt 2012;49(9):50-53
  82. Hickel, R. (2012). Neueste Komposite -viele Behauptungen. Bayerisches Zahnärzteblatt 2012; 11: 50-53.
  83. Ganster B, Fischer UK, Moszner N, Liska R. (2007). New photocleavable structures. V. Bisacylgermane based photoinitiators for visible light curing. Macromolecules 2007, submitted for publication.
  84. Bayraktar, Y., Ercan, E., Hamidi, M. M., & Çolak, H. (2016). One-year clini- cal evaluation of different types of bulk-fill composites. Journal of Investigative and Clinical Dentistry, (0), 1-9.
  85. Stoll, R., Gente, M., Palichleb, M., & Stachniss, V. (2007). On the effect of an internal light conductor on the marginal integrity of class-II composite fillings. Dental Materials, 23(2), 145-152.
  86. Kinomoto, Y., & Torii, M. (1998). Photoelastic analysis of polymerization contraction stresses in resin composite restorations. Journal of Dentistry, 26(2), 165-71.
  87. Leprince, J. G., Hadis, M., Shortall, A. C., Ferracane, J. L., Devaux, J., Leloup, G., & Palin, W. M. (2011). Photoinitiator type and applicability of ex- posure reciprocity law in filled and unfilled photoactive resins. Dental Materi- als, 27(2), 157-164.
  88. Photopolymerisable and dual curing dental materials based on thiourea derivati- ves. Patent-Nr. WO2015140276 A1 (Veröffentlicht am 24.09.2015)
  89. Mehl, A., Hickel, R., & Kunzelmann, K.-H. (1997). Physical properties and gap formation of light-cured composites with and without "softstart- polymerization." Journal of Dentistry, 25(3-4), 321-330.
  90. Herbert, D. (1998). PHYSIK III: Optik, Thermodynamik, Quanten. De Gruyter Verlag, Auflage: Reprint 2010 (03. September 1998)
  91. Labella, R., Lambrechts, P., Van Meerbeek, B., & Vanherle, G. (1999). Po- lymerization shrinkage and elasticity of flowable composites and filled adhesi- ves. Dental Materials : Official Publication of the Academy of Dental Materials, 15(2), 128-137.
  92. Alrahlah, A., Silikas, N., & Watts, D. C. (2014). Post-cure depth of cure of bulk fill dental resin-composites. Dental Materials, 30(2), 149-154.
  93. van Dijken, J. W. V, & Pallesen, U. (2016). Posterior bulk-filled resin composi- te restorations: A 5-year randomized controlled clinical study. J Dent, 51, 29-35.
  94. Facher A, Vogel K, Grabher K, Hirt T, Heintze S. (2013). Comparison of flowable composites for bulk filling. J Dent Res:Poster Presentation (Nr. 175701) at the IADR General Session Seattle, March 20-23, 2013.
  95. El-Korashy, D. I. (2010). Post-gel shrinkage strain and degree of conversion of preheated resin composite cured using different regimens. Operative Dentistry, 35(2), 172-9.
  96. Soh, M. S., Yap, A. U. J., & Siow, K. S. (2004). Post-gel shrinkage with diffe- rent modes of LED and halogen light curing units. Operative Dentistry, 29(3), 317-24.
  97. Bowen, R. L. (1963). Protperties of a silica-reinforced polymer for dental resto- rations. The Journal oft he American Dental Association, Vol. 66, pp. 57-64, 1963.
  98. Chen, Y. C., Ferracane, J. L., & Prahl, S. A. (2007). Quantum yield of conver- sion of the photoinitiator camphorquinone. Dental Materials, 23(6), 655-664.
  99. van Dijken, J. W., & Pallesen, U. (2015). Randomized 3-year clinical evaluati- on of Class I and II posterior resin restorations placed with a bulk-fill resin com- posite and a one-step self-etching adhesive. The Journal of Adhesive Dentistry, 17(1), 81-8.
  100. Sakaguchi, R. L., & Berge, H. X. (1998). Reduced light energy density de- creases post-gel contraction while maintaining degree of conversion in composi- tes. Journal of Dentistry, 26(8), 695-700.
  101. Davidson, C. L., & de Gee, a J. (1984). Relaxation of polymerization contrac- tion stresses by flow in dental composites. Journal of Dental Research, 63(2), 146-148.
  102. Ferracane, J. L. (2011). Resin composite -State of the art. Dental Materials, 27(1), 29-38.
  103. Feilzer, A. J., De Gee, A. J., & Davidson, C. L. (1987). Setting stress in com- posite resin in relation to configuration of the restoration. Journal of Dental Re- search, 66(11), 1636-9.
  104. Jedrychowski, J. R., Bleier, R. G., & Caputo, A. A. (2001). Shrinkage stresses associated with incremental composite filling techniques in conservative Class II restorations. ASDC Journal of Dentistry for Children, 68(3), 161-7, 150.
  105. Weinmann, W., Thalacker, C., & Guggenberger, R. (2005). Siloranes in den- tal composites. Dental Materials, 21(1), 68-74.
  106. Sultan, T. (2015). Spannungsoptische Untersuchung lichthärtender Komposite und adhäsiv eingesetzter keramischer Inlays auf polymerisationsbedingte Span- nungen in Modellkavitäten. Med. Dissertation, Marburg 2015.
  107. Mine, A., De Munck, J., Van Ende, A., Cardoso, M. V., Kuboki, T., Yoshida, Y., & Van Meerbeek, B. (2010). TEM characterization of a silorane composite bonded to enamel/dentin. Dental Materials, 26(6), 524-532.
  108. Davidson, C. L., de Gee, A. J., & Feilzer, A. (1984). The competition between the composite-dentin bond strength and the polymerization contraction stress. Journal of Dental Research, 63(12), 1396-9.
  109. Belli, S., Inokoshi, S., Ozer, F., Pereira, P. N., Ogata, M., & Tagami, J. (2001). The effect of additional enamel etching and a flowable composite to the interfacial integrity of Class II adhesive composite restorations. Operative Den- tistry, 26(1), 70-5.
  110. Visvanathan, A., Ilie, N., Hickel, R., & Kunzelmann, K. H. (2007). The in- fluence of curing times and light curing methods on the polymerization shrinka- ge stress of a shrinkage-optimized composite with hybrid-type prepolymer fil- lers. Dental Materials, 23(7), 777-784.
  111. Finan, L., Palin, W. M., Moskwa, N., McGinley, E. L., & Fleming, G. J. P. (2013). The influence of irradiation potential on the degree of conversion and mechanical properties of two bulk-fill flowable RBC base materials. Dental Ma- terials : Official Publication of the Academy of Dental Materials, 29(8), 906-12.
  112. Frankenberger, R., Lopes, M., Perdigão, J., Ambrose, W. W., & Rosa, B. T. (2002). The use of flowable composites as filled adhesives. Dental Materials, 18(3), 227-238.
  113. Price, R. B. T., Felix, C. A., & Andreou, P. (2006). Third-generation vs a se- cond-generation LED curing light: effect on Knoop microhardness. Compendi- um of Continuing Education in Dentistry (Jamesburg, N.J. : 1995), 27(9), 490-6, 518.
  114. Thormann, J., Lutz, F. (1999). Typenprüfung von Lichtpolymerisationsgeräten II: Stand 1998. Schweiz Monatsschr Zahnmed 1999, 109(12):1299-323.
  115. Nötzel, M. (2008). Untersuchungen zu dem Einfluss von Verarbeitungstechni- ken lichthärtender Komposite auf polymerisationsbedingte Spannungen in Mo- dellkavitäten. Med. Dissertation, Marburg, 2008.
  116. Dewaele, M., Truffier-Boutry, D., Devaux, J., & Leloup, G. (2006). Volume contraction in photocured dental resins: The shrinkage-conversion relationship revisited. Dental Materials, 22(4), 359-365.
  117. Burtscher, P. (2011). Von geschichteten Inkrementen zur Vier-Millimeter- Bulk-Fill-Technik -Anforderungen an Komposit und Lichthärtung. DZW Die Zahnarzt Woche (39): 6-8 (2011)
  118. Noack, M. (2013). Wirtschaftliche Füllungstechnik -Warum und womit? ZWR - Das Deutsche Zahnärzteblatt, 122(3), 86-94.
  119. Völkel, T. (2009). Wissenschaftliche Dokumentation bluephase® style. Ivoclar Vivadent AG, Forschung und Entwicklung


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten