Publikationsserver der Universitätsbibliothek Marburg

Titel:Structural characterization of antimonide-based metamorphic buffer layers on (001) silicon substrate
Autor:Ott, Andrea
Weitere Beteiligte: Volz, Kerstin (Prof. Dr.)
Veröffentlicht:2017
URI:https://archiv.ub.uni-marburg.de/diss/z2017/0116
URN: urn:nbn:de:hebis:04-z2017-01160
DOI: https://doi.org/10.17192/z2017.0116
DDC: Physik
Titel (trans.):Strukturelle Untersuchung von Antimon-basierten metamorphen Pufferschichten auf (001) Siliziumsubstrat
Publikationsdatum:2017-03-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Lomer Versetzungen, Halbleiter, Elektronenmikroskopie, GaSb, Physik,, metamorphic growth, semiconductor, Ga(PSb), Verspannung, electron microscopy, Ga(AsSb), Lomer dislocations,strain, Metamorphes Wachstum

Summary:
The aim of the present study was the growth of antimony-based buffer layers with the lattice constant of InP on a GaP/Si pseudosubstrate by metal organic vapor phase epitaxy (MOVPE) and their structural investigation by atomic force microscopy (AFM), X-ray diffraction (XRD), and (scanning) transmission electron microscopy ((S)TEM). The purpose of these buffer layers was to overcome the lattice mismatch between Si and InP and to provide a smooth surface for the growth of n-doped (GaIn)As channel layers with a lattice constant of InP on a Si substrate. The growth of Sb-based buffer layers on GaP/Si pseudosubstrate is very challenging. The main problem was the island-like nucleation that occurs for Ga(PSb), Ga(AsSb) as well as GaSb on GaP/Si. The islands had different degrees of relaxation. The atomic resolution HAADF investigations have shown that the islands not only have Lomer but also 60° dislocations and 60° dislocation pairs at the interface. Additionally, they were relaxed by plastic relaxation due to the free surface as well as by the formation of stacking faults. It has been shown that the interface roughness increases for the ternary material system Ga(PSb)/GaP compared to the binary GaSb/GaP and is most severe for the Ga(AsSb)/GaP, where the group V atoms are completely exchanged from P to (AsSb). With increasing growth time, the sizes of the islands increased until they coalesced. The degree of relaxation increased with an increasing degree of coalescence. The density of stacking fault as well as threading dislocation densities were in the order of 10^10/cm^2. In addition, a low Sb-content layer that grew pseudomorphically onto GaP was observed for Ga(PSb) layers. The island-like nucleation of Ga(PSb) could neither be overcome by introducing a pseudomorphically grown Ga(PSb) interlayer with a low Sb-content between the metamorphic Ga(PSb) and the GaP layer nor by utilizing a flow rate modulated epitaxy. The most promising approach had been the introduction of an InP layer that showed a 2D-nucleation on the GaP/Si pseudosubstrate. If the growth conditions are optimized so that the relaxation of the layer will take place without the formation of lattice defects such as stacking faults or threading dislocations, the InP/GaP/Si pseudosubstrate will be a very promising growth template for the (GaIn)As channel layers.

Bibliographie / References

  1. [101] P. D. Nellist. Aberration-Corrected Analytical Transmission Electron Microscopy, Kapitel Theory and Simulations of STEM Imaging, 89-109. Wiley (2011)
  2. [123] B. Kabius und H. Rose. Aberration-Corrected Analytical Transmission Electron Microscopy, Kapitel Novel Aberration Correction Concepts, 261. Wiley (2009)
  3. [93] P. Hawkes. 'Aberration correction past and present.' Phil. Trans. R. Soc. A 367: 3637 (2009)
  4. [111] P. F. Fewster. 'Absolute lattice parameter measurement.' Journal of Materials Science: Materials in Electronics 10: 175 (1999)
  5. [144] M. Albrecht et al.. 'Surface ripples, crosshatch pattern, and dislocation formation: Cooperating mechanisms in lattice mismatch relaxation.' Applied Physics Letters 67: 1232 (1995)
  6. [76] J. F. Woitok. 'High-Resolution XRD: Analysis of Epitaxial Layers.' PANalytical Manual (2005)
  7. [65] D. Holt. 'Antiphase boundaries in semiconducting compounds.' Journal of Physics and Chemistry of Solids 30, 6: 1297 (1969)
  8. [68] G. P. Tang et al.. 'Antiphase-Domain-Free InP on (100) Si.' Japanese Journal of Applied Physics 31, 8A: L1126 (1992)
  9. [67] M. Grundmann. 'Antiphase-domain-free InP on Si (001): optimization of MOCVD process.' Journal of Crystal Growth 115, 1-4: 150 (1991)
  10. [109] K. Ishizuka. 'A practical approach for STEM image simulation based on the FFT multislice method.' Ultramicroscopy 90, 2-3: 71 (2002)
  11. [118] J. Taftøund J. C. H. Spence. 'A simple method for the determination of structurefactor phase relationships and crystal polarity using electron diffraction.' Journal of Applied Crystallography 15, 1: 60 (1982)
  12. [163] J. M. Mills und P. Stadelmann. 'A study of the structure of Lomer and 60 degree dislocations in aluminium using high-resolution transmission electron microscopy.' Philosophical Magazine A 60: 355 (1989)
  13. [105] P. J. Phillips et al.. 'Atomic-resolution defect contrast in low angle annular dark-field STEM.' Ultramicroscopy 116: 47 (2012)
  14. [130] A. Bere und A. Serra. 'Atomic structure of dislocation cores in GaN.' Physical Review B 65: 205323 (2002)
  15. [129] A. S. Nandedkar und J. Narayan. 'Atomic structure of dislocations in silicon, germanium and diamond.' Philosophical Magazine A 61: 873 (1990)
  16. [71] M. V. Fischetti und S. E. Laux. 'Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys.' Journal of Applied Physics 80: 2234 (1996)
  17. [82] O. Scherzer. 'Über einige Fehler von Elektronenlinsen.' Optik 101: 593 (1936)
  18. [64] A. Beyer et al.. 'Influence of crystal polarity on crystal defects in GaP grown on exact Si (001).' Journal of Applied Physics 109, 8: 083529 (2011)
  19. [84] A. Bleloch und Q. Ramasse. Aberration-Corrected Analytical Transmission Electron Microscopy, Kapitel 4 - Lens Aberrations: Diagnosis and Correction, 55-89. Wiley (2011)
  20. [139] V. Haxha und M. Migliorato. 'Calculating strain using atomistic simulations: A review.' J. Phys. Conf. Ser. 242: 012001 (2010)
  21. [168] G. Capellini et al.. 'Strain relaxation in high Ge content SiGe layers deposited on Si.' Journal of Applied Physics 107: 063504 (2010)
  22. [110] K. Werner. 'Chemical vapor deposition and physical characterization of gallium and carbon-related structures on Si (001) and GaP/Si (001) templates for the growth of graphene layers.' Dissertation, Philipps-Universität Marburg (2015)
  23. [81] A. Weickenmeier und H. Kohl. 'Computation of absorptive form factors for highenergy electron diffraction.' Acta Crystallographica Section A Foundations of Crystallography 47, 5: 590 (1991)
  24. [127] F. H. Stillinger und T. A. Weber. 'Computer simulation of local order in condensed phases of silicon.' Physical Review B 31: 5262 (1985)
  25. [134] J. M. Cowley und a. F. Moodie. 'The scattering of electrons by atoms and crystals. I. A new theoretical approach.' Acta Crystallographica 10, 10: 609 (1957)
  26. [145] H. Chen et al.. 'Crosshatching on a SiGe film grown on a Si (001) substrate studied by Raman mapping and atomic force microscopy.' Physical Review B 65: 233303 (2002)
  27. [185] T. E. Crumbaker et al.. 'Growth of InP on Si substrates by molecular beam epitaxy.' Applied Physics Letters 54: 140 (1989)
  28. [99] J. M. Cowley und Y. Huang. 'De-channelling contrast in annular dark-field STEM.' Ultramicroscopy 40: 171 (1992)
  29. [178] A. Stegmüller. 'Description of Gallium Phosphide Epitaxy Growth by Computational Chemistry.' Dissertation, Philipps-Universität Marburg (2015)
  30. [106] S. Hillyard und J. Silcox. 'Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging.' Ultramicroscopy 58: 6 (1995)
  31. [121] E. Spiecker. 'Determination of crystal polarity from bend contours in transmission electron microscope images.' Ultramicroscopy 92: 111 (2002)
  32. [61] W. Shockley. 'Dislocations and edge states in the diamond crystal structure.' Physical Review 91: 228 (1953)
  33. [138] C. R. Hall und P. B. Hirsch. 'Effect of Thermal Diffuse Scattering on Propagation of High Energy Electrons Through Crystals.' Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 286, 1405: 158 (1965)
  34. [62] S. M. Hu. 'Formation of stacking faults and enhanced diffusion in the oxidation of silicon.' Journal of Applied Physics 45: 1567 (1974)
  35. [176] J. Li et al.. 'Full-field strain mapping at a Ge/Si heterostructure interface.' Materials 6: 2130 (2013)
  36. [78] B. Fultz und J. Howe. Transmission Electron Microscopy and Diffractometry of Materials. Springer (2008)
  37. [142] P. L. Galindo et al.. 'The Peak Pairs algorithm for strain mapping from HRTEM images.' Ultramicroscopy 107, 12: 1186 (2007)
  38. [66] S. F. Fang et al.. 'Gallium arsenide and other compound semiconductors on silicon.' Journal of Applied Physics 68, 7: R31 (1990)
  39. [60] H. Gottschalk et al.. 'Stacking Fault Energy and Ionicity of Cubic III-V Compounds.' Phys. Stat. Sol. 45: 207 (1978)
  40. [107] V. Grillo et al.. 'Strain, composition and disorder in ADF imaging of semiconductors.' Journal of Physics: Conference Series 326: 012006 (2011)
  41. [181] K. Matsumoto et al.. 'Growth of GaInAs/InP MQW using MOVPE on directlybonded InP/Si substrate.' Journal of Crystal Growth 370: 133 (2013)
  42. [83] M. Haider et al.. 'Information Transfer in a TEM Corrected for Spherical and Chromatic Aberration.' Microscopy and Microanalysis 16: 393 (2010)
  43. [95] P. Hartel et al.. 'Conditions and reasons for incoherent imaging in STEM.' Ultramicroscopy 63, 2: 93 (1996)
  44. [190] M. K. Lee et al.. 'Heteroepitaxial growth of InP directly on Si by low pressure metalorgani chemical vapor deposition.' Applied Physics Letters 50: 1725 (1987)
  45. [180] J. M. Zahler et al.. 'High efficiency InGaAs solar cells on Si by InP layer transfer.' Applied Physics Letters 91: 012108 (2007)
  46. [184] M. W. Wanlass et al.. 'High-efficiency, thin-film InP concentrator solar cells.' Journal of Electronic Materials 20: 1019 (1991)
  47. [72] F. Schäffler. 'High-mobility Si and Ge structures.' Semiconductor Science and Technology 12: 1515 (1999)
  48. [108] S. J. Pennycook und D. Jesson. 'High-resolution Z-contrast imaging of crystals.' Ultramicroscopy 37, 1-4: 14 (1991)
  49. [69] A. Beyer. 'Hochaufgelöste transmissionselektronenmikroskopische Untersuchungen an Galliumphosphid auf Silizium.' Dissertation, Philipps-Universität Marburg (2012)
  50. [192] H. Horikawa et al.. 'Hetero-epitaxial growth of InP on Si substrates by LP-MOVPE.' Journal of Crystal Growth 93: 523 (1988)
  51. [140] M. Hÿtch et al.. 'Quantitative measurement of displacement and strain fields from HREM micrographs.' Ultramicroscopy 74, 3: 131 (1998)
  52. [116] G. Hug et al.. 'Weak-beam observation of a dissociation transition in TiAl.' Philosophical Magazine 57: 499 (1988)
  53. [73] S. C. Jain et al.. 'III-nitrides: Growth, characterization, and properties.' Journal of Applied Physics 87: 965 (2000)
  54. [148] S. El Kazzi et al.. 'Interplay between Sb flux and growth temperature during the formation of GaSb islands on GaP.' Journal of Applied Physics 111: 123506 (2012)
  55. [126] Y. Wang et al.. 'Investigation of the anisotropic strain relaxation in GaSb islands on GaP.' Journal of Applied Physics 110, 4: 043509 (2011)
  56. [115] D. J. H. Cockayne et al.. 'Investigations of dislocation strain fields using weak beams.' Philosophical Magazine 20: 1265 (1969)
  57. [169] F. Isa et al.. 'Onset of vertical threading dislocations in SiGe/ Si(001) at a critical Ge concentration.' APL Materials 1: 052109 (2013)
  58. [189] N. H. Julian et al.. 'Improvements in epitaxial lateral overgrowth of InP by MOVPE.' Journal of Crystal Growth 402: 234 (2014)
  59. [85] O. Krivanek et al.. 'Towards sub-Å electron beams.' Ultramicroscopy 78, 1-4: 1 (1999)
  60. [75] W. Voigt. Lehrbuch der Kristallphysik : mit Ausschluss d. Kristalloptik. Teubner, Leipzig (1910)
  61. [175] M. Levinshtein et al. (Herausgeber). Handbook Series on Semiconductor Parameters, vol 1. World Scientific (1996)
  62. [98] R. F. Loane et al.. 'Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark-field STEM images.' Acta Crystallographica A 44: 912 (1988)
  63. [149] P. Ludewig et al.. 'MOVPE growth mechanisms of dilute bismide III/V alloys.' Semiconductor Science and Technology 30: 094017 (2015)
  64. [120] K. Marthinsen et al.. 'Non-centrosymmetry Effects and Polarity Determination in III/V Semiconductors.' Acta Crystallographica Section A Foundations of Crystallography 53, 3: 366 (1997)
  65. [58] A. Marzegalli et al.. 'Onset of plastic relaxation in the growth of Ge on Si(001) at low temperatures: Atomic-scale microscopy and dislocation modeling.' Physical Review B - Condensed Matter and Materials Physics 88: 165418 (2013)
  66. [96] T. Walther et al.. 'Measuring the contrast in annular dark field STEM images as a function of camera length.' Journal of Physics: Conference Series 241: 012068 (2010)
  67. [174] R. M. France et al.. 'Metamorphic epitaxy for multijunction solar cells.' MRS Bulletin 41: 202 (2016)
  68. [131] Y. H. Lee et al.. 'Molecular-dynamics simulation of thermal conductivity in amorphous silicon.' Physical Review B 43: 6573 (1991)
  69. [63] V. Narayanan et al.. 'Origins of defects in self assembled GaP islands grown on Si (001) and Si (111).' Thin Solid Films 357, 1: 53 (1999)
  70. [122] G. Lichte H. amd Geoger und M. Linck. 'Off-axis electron holography in an aberrationcorrected transmission electron microscope.' Phil. Trans. R. Soc. A 367: 3773 (2009)
  71. [102] J. Spence et al.. 'On the Holz contribution to stem lattice images formed using high-angle dark-field detectors.' Ultramicroscopy 31, 2: 233 (1989)
  72. [162] N. Otsuka et al.. 'Study of heteroepitaxial interfaces by atomic resolution electron microscopy.' Journal of Vacuum Science & Technology B 4: 896 (1986)
  73. [166] E. Peiner et al.. 'The effect of threading dislocations on optical absorption and electron scattering in strongly mismatched heteroepitaxial III/V compound semiconductors on silicon.' Journal of Physics: Condensed Matter 14: 13195 (2002)
  74. [179] D. Pasquariello und K. Hjort. 'Plasma-assisted InP-to-Si low temperature wafer bonding.' IEEE Journal of selected topics in quantum electronics 8: 118 (2002)
  75. [114] R. Fritz. 'Quantitative Untersuchungen der Zusammensetzung von kubischen III/VVerbindungshalbleitern mittels HAADF-STEM.' Dissertation, Philipps-Universität Marburg (2013)
  76. [80] P. A. Doyle und P. S. Turner. 'Relativistic Hartree-Fock X-ray and electron scattering factors.' Acta Crystallographica Section A 24, 3: 390 (1968)
  77. [146] E. Fitzgerald et al.. 'Relaxed GeSi structures for III/V integration with Si and high mobility two-dimensional electron gases in Si.' Journal of Vacuum Science & Technology B 10: 1807 (1992)
  78. [97] J. Fertig und H. Rose. 'Resolution and contrast of crystalline objects in highresolution scanning-transmission electron-microscopy.' Optik 59: 407 (1981)
  79. [128] C. Roland und G. H. Gilmer. 'Epitaxy on surfaces vicinal to Si(001). I. Diffusion of silicon adatoms over the terraces.' Physical Review B 46: 13428 (1992)
  80. [79] E. Rutherford. 'Scattering of Alpha and Beta Particles of Matter and the Structure of the Atom.' Philosophical Magazine 21: 669 (1911)
  81. [86] M. A. O'Keefe. 'Seeing atoms with aberration-corrected sub-Angström electron microscopy.' Ultramicroscopy 108: 196 (2008)
  82. [182] A. Seki et al.. 'MOCVD Growth of InP on 4-inch Si Substrate with GaAs Intermediate Layer.' Japanese Journal of Applied Physics 67: L1587 (1987)
  83. [143] S. Y. Shiryaev et al.. 'On the nature of cross-hatch patterns on compositionally graded SiGe alloy layers.' Applied Physics Letters 64: 3305 (1994)
  84. [151] J. K. Shurtleff et al.. 'Band-gap control of GaInP using Sb as a surfactant.' Applied Physics Letters 75: 1914 (1999)
  85. [104] Z. Wang und J. M. Cowley. 'Simulating high-angle annular dark-field inelastic thermal diffuse scattering.' Ultramicroscopy 31: 437 (1989)
  86. [135] E. J. Kirkland et al.. 'Simulation of annular dark field stem images using a modified multislice method.' Ultramicroscopy 23: 77 (1987)
  87. [124] L. Jones et al.. 'Smart Align-a new tool for robust non-rigid registration of scanning microscope data.' Advanced Structural and Chemical Imaging 1: 1 (2015)
  88. [89] O. Scherzer. 'Sphärische und chromatische Korrektur von Elektronen-Linsen.' Optik 2: 114 (1947)
  89. [177] A. Stegmüller et al.. 'A quantum chemical study on gas phase decomposition pathways of triethylgallane (TEG, Ga(C2H5)3) and tert-butylphosphine (TBP, PH2(t-C4H9)) under MOVPE conditions.' Phys.Chem.Chem.Phys 16: 17018 (2014)
  90. [125] A. Rosenauer und M. Schowalter. 'STEMSIM - A New Software Tool for Simulation of STEM.' Microscopy of Semiconducting Materials 2007 120, 3: 170 (2008)
  91. [150] G. B. Stringfellow et al.. 'Surface processes in OMVPE - the frontiers.' Journal of Crystal Growth 221: 1 (2000)
  92. [183] M. Sugo et al.. 'Heteroepitaxial growth and characterization of InP on Si substrates.' Journal of Applied Physics 68: 540 (1990)
  93. [100] V. Grillo. 'The effect of surface strain relaxation on HAADF imaging.' Ultramicroscopy 109, 12: 1453 (2009)
  94. [59] P. Gallagher. 'The Influence of Aloying, Temperature, and Related Effects on the Stacking Fault Energy.' Metallurgical Transactions 1: 2429 (1970)
  95. [94] H. Bethe. 'Theorie der Beugung von Elektronen an Kristallen.' Annalen der Physik 392, 17: 55 (1928)
  96. [74] M. Grundmann. The physics of semiconductors. Springer (2010)
  97. [88] O. Scherzer. 'The Theoretical Resolution Limit of the Electron Microscope.' Journal of Applied Physics 20, 1: 20 (1949)
  98. [87] P. C. Tiemeijer et al.. 'Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part I : Creating highly coherent monochromated illumination.' Ultramicroscopy 114: 72 (2012)
  99. [119] E. Spiecker. 'Unified polarity analysis of <110> and <001> Sphalerite-type crystal samples using Bragg-line contrast rules.' Inst. Phys. Conf. Ser. 180: 233 (2003)
  100. [70] E. P. O'Reilly. 'Valence band engineering in strained-layer structures.' Semiconductor Science and Technology 4: 121 (1999)
  101. [164] A. Vila` et al.. 'Structure of 60◦ dislocations at the GaAs/Si interface.' Journal of Applied Physics 79: 676 (1996)
  102. [132] R. L. C. Vink et al.. 'Fitting the Stillinger-Weber potential to amorphous silicon.' Journal of Non-Crystalline Solids 282: 248 (2001)
  103. [113] R. Schmitt. 'Wachstum und Charakterisierung metamorpher Ga(AsP)- Pufferstrukturen für Tandem-Solarzellen auf Silizium.' Diplomarbeit, PhilippsUniversität Marburg (2012)
  104. [112] P. F. Fewster. X-ray scattering from semiconductors. Imperial College Press (2003)
  105. [191] A. Yamamoto et al.. 'Optimization of InP/Si heteroepitaxial growth conditions using organometallic vapor phase epitaxy.' Journal of Crystal Growth 96: 369 (1989)
  106. [165] J. Yamasaki et al.. 'Atomic structure analysis of stacking faults and misfit dislocations at 3C-SiC/Si(001) interfaces by aberration-corrected transmission electron microscopy.' Journal of Physics D: Applied Physics 45: 494002 (2012)
  107. [103] S. J. Pennycook. 'Z-contrast STEM for Materials Science.' Ultramicroscopy 30: 58 (1989)


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten