Publikationsserver der Universitätsbibliothek Marburg

Titel:Structural analysis of dilute bismide alloys by means of high resolution scanning transmission electron microscopy
Autor:Knaub, Nikolai
Weitere Beteiligte: Volz, Kerstin (Prof. Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0656
DOI: https://doi.org/10.17192/z2016.0656
URN: urn:nbn:de:hebis:04-z2016-06566
DDC: Physik
Titel(trans.):Structural analysis of dilute bismide alloys by means of high resolution scanning transmission electron microscopy
Publikationsdatum:2016-09-29
Lizenz:https://creativecommons.org/licenses/by-nc-sa/4.0

Dokument

Schlagwörter:
dilute bismide alloys, Bismut, Verbindungshalbleiter, III-V semiconductors, Verdünnte Legierung, semiconductor physics, Raster-Transmissions-Elektronenmikroskopie, Scanning transmission electron microscopy, Halbleiterphysik

Zusammenfassung:
Energy efficiency plays a key role in the development of new industrial as well as daily life applications. There exists a strong demand for a new energy efficient generation of optoelectronic devices, especially in the growing market of internet data transfer where devices operate in the 1.55 µm wavelength regime. A promising material system that could face the challenge of efficient devices is the dilute Bi containing Ga(AsBi) and the dilute bismides in general. The novel material system Ga(AsBi) has been proven that the incorporation of dilute Bi amounts reduces the bandgap energy. Furthermore, a suppression of non-radiative loss mechanisms and a decreased temperature-dependency of the emission wavelength could be verified which can be described by the valence band anti crossing model. Moreover, first electrically pumped Ga(AsBi) based laser devices could be fabricated which reveal once more the huge potential of dilute bismides. In this work structural analysis of MOVPE grown Ga(AsBi), Ga(PAsBi) and Ga(NAsBi) on GaAs substrates were carried out by means of spherical aberration corrected STEM. In addition to STEM ADF measurements, ADF image simulations of Ga(AsBi) supercells were performed which allowed the interpretation of the measurements as well as the Bi quantification in Ga(AsBi)-QWs. Despite STEM measurements, image processing was applied for further analysis, i.e., determination and separation of the crystal sublattices in HR measurements via the MATLAB software. Image processing is mandatory since it allows on the one hand a quantification of the Bi fraction in Ga(AsBi), and on the other hand a further statistical evaluation of the atomic column intensities is possible. The results of this work show that STEM is inevitable for the characterization of novel semiconductors as well as for the detection of atomic ordering. Finally, Bi has the ability to distribute homogeneously in dilute Bi-containing materials, when MOVPE takes place under optimized growth conditions which is very promising for the realization and fabrication of new energy efficient semiconductor devices.

Summary:
Für die Entwicklung von neuen technischen Anwendungen, spielt die Energieeffizienz eine tragende Rolle. So ist die Nachfrage nach neuartigen energieeffizienten optoelektronischen Bauelementen sehr groß, vor allem im Bereich des Internet-Datentransfers und der dafür benötigten Laserdioden mit einer Emissionswellenlänge von 1,55 µm. Ein vielversprechendes Materialsystem, welches sich zur Herstellung von hocheffizienten Bauelementen eignet, ist der verdünnt Bi-haltige Verbindungshalbleiter Ga(AsBi). Es ist bekannt, dass der geringe Einbau von Bi in GaAs die Bandlücke sowie die Temperaturabhängigkeit der Emissionswellenlänge reduziert und zur Unterdrückung von nichtstrahlenden Rekombinationsprozessen beiträgt, was mit Hilfe des sogenannten Valenzband Anticrossing Models beschrieben werden kann. In der Praxis konnte somit zum ersten Mal ein elektrisch gepumpter Breitstreifen Ga(AsBi) Quantum-well (QW) Laser realisiert werden. Diese Arbeit beschäftigt sich mit der Strukturanalyse von Ga(AsBi), Ga(PAsBi) und Ga(NAsBi), welche mittels der metallorganischen Gasphasenepitaxie (MOVPE, metal organic vapour phase epitaxy) hergestellt wurden, wobei das Wachstum der Materialsysteme nicht Teil dieser Arbeit war. Die strukturellen Untersuchungen erfolgten mit Hilfe von sphärische Aberration korrigierter Rastertransmissionselektronenmikroskopie (STEM, scanning transmission electron microscopy). Die Auswertung und Interpretation der STEM Messungen erfolgte unter anderem mit Hilfe von Simulationsrechnungen, die an Ga(AsBi) Superzellen durchgeführt wurden sowie mittels weiterer Datenverarbeitung. Diese erfolgte mit der MATLAB-Software, welche die Trennung der Kristalluntergitter in Hochauflösungsaufnahmen ermöglichte sowie zur statistischen Auswertung der Atomsäulenintensitäten diente. Insgesamt zeigen die Resultate dieser Arbeit, dass die Rastertransmissionselektronenmikroskopie aus der Strukturanalyse und der Charakterisierung von neuartigen Halbleitern nicht wegzudenken bzw. notwendig ist. Außerdem zeigen die Ergebnisse auch, dass Bi haltige Halbleitermaterialien ein hohes Maß an chemischer Homogenität aufweisen, was die Realisierung von neuen energieeffizienten Halbleiterbauelementen erlauben könnte.

Bibliographie / References

  1. [7] P. Ludewig, Z.L. Bushell, L. Nattermann, N. Knaub, W. Stolz, K. Volz, Growth of Ga(AsBi) on GaAs by continuous flow MOVPE, J. Cryst. Growth. http://dx.doi. org/10.1016/j.jcrysgro.2014.03.041, accepted for publication.
  2. [6] S. Francoeur, M.-J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk and T. Tiedje, Appl. Phys. Lett. 82, 3874 (2003).
  3. [13] P.F. Fewster, Analysis of nearly perfect semiconductor multi-layer structures, X-Ray Scattering from Semiconductors, 2nd ed., Imperial College Press, London (2003) 200-247.
  4. [24] J. Wu, W. Shan, W. Walukiewicz, Band anticrossing in highly mismatched III-V semiconductor alloys, Semicond. Sci. Technol. 17 (2002) 860-869.
  5. [10] S. Tixier, S.E. Webster, E.C. Young, T. Tiedje, S. Francoeur, A. Mascarenhas, et al., Band gaps of the dilute quaternary alloys GaNxAs1 x yBiy and Ga1 y InyNxAs1 x, Appl. Phys. Lett. 86 (2005) 112113.
  6. [25] K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis and A. Krotkus, Appl. Phys. Lett. 91, 051909 (2007).
  7. [18] E. Sterzer, N. Knaub, P. Ludewig, R. Straubinger, A. Beyer and K. Volz, J. Cryst. Growth 408, 71 (2014).
  8. [1] S.J. Sweeney, S.R. Jin, Bismide-nitride alloys: promising for efficient light emitting devices in the near- and mid-infrared, J. Appl. Phys. 113 (2013) 043110.
  9. [21] T. Miyamoto, T. Kageyama, S. Makino, D. Schlenker, F. Koyama, K. Iga, CBE and MOCVD growth of GaInNAs, J. Cryst. Growth 209 (2000) 339-344.
  10. [26] K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. Watkins, C. Wang, X. Liu, Y.-J. Cho and J. Furdyna, Phys. Rev. B 75, 045203 (2007).
  11. [5] X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, Y. Zhang, Composition dependence of photoluminescence of GaAs1 xBix alloys, Appl. Phys. Lett. 95 (2009) 041903.
  12. [56] O. Krivanek, N. Dellby and A. Lupini, Ultramicroscopy 78, 1 (1999).
  13. [16] N.Q. Thinh, I.A. Buyanova, W.M. Chen, H.P. Xin, C.W. Tu, Formation of nonradiative defects in molecular beam epitaxial GaNxAs1 x studied by optically detected magnetic resonance, Appl. Phys. Lett. 79 (2001) 3089.
  14. [10] A. G. Norman, R. France and A. J. Ptak, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 29, 03C121 (2011).
  15. [2] B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. Young, T. Tiedje, Giant spin-orbit bowing in GaAs1 xBix, Phys. Rev. Lett. 97 (2006) 067205.
  16. [50] G. B. Stringfellow, J. Cryst. Growth 128, 503 (1993).
  17. [65] V. Grillo and F. Rossi, J. Cryst. Growth 318, 1151 (2011).
  18. [19] P. Ludewig, N. Knaub, W. Stolz and K. Volz, J. Cryst. Growth 370, 186 (2013).
  19. [21] Z. Bushell, P. Ludewig, N. Knaub, Z. Batool, K. Hild, W. Stolz, S. Sweeney and K. Volz, J. Cryst. Growth 396, 79 (2014).
  20. [81] M. Panek, M. Ratuszek and M. Tłaczała, J. Cryst. Growth 74, 568 (1986).
  21. [11] M. Wu, E. Luna, J. Puustinen, M. Guina and A. Trampert, Appl. Phys. Lett. 105 (2014).
  22. [43] M. Yoshimoto, W. Huang, Y. Takehara, J. Saraie, A. Chayahara, Y. Horino and K. Oe, Jpn. J. Appl. Phys. 43, L845 (2004).
  23. [61] R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa and E. Abe, Nat. Mater. 10, 278 (2011).
  24. [17] S.G. Spruytte, C.W. Coldren, J.S. Harris, W. Wampler, P. Krispin, K. Ploog, et al., Incorporation of nitrogen in nitride-arsenides: origin of improved luminescence efficiency after anneal, J. Appl. Phys. 89 (2001) 4401.
  25. [26] G. Feng, K. Oe, M. Yoshimoto, Influence of thermal annealing treatment on the luminescence properties of dilute GaNAs-bismide alloy, Jpn. J. Appl. Phys. 46 (2007) L764-L766.
  26. [20] F. Höhnsdorf, J. Koch, C. Agert, W. Stolz, Investigations of (GaIn)(NAs) bulk layers and (GaIn)(NAs)/GaAs multiple quantum well structures grown using tertiarybutylarsine (TBAs) and 1,1-dimethylhydrazine (UDMHy), J. Cryst. Growth 195 (1998) 391-396.
  27. [6] A.J. Ptak, R. France, D.A. Beaton, K. Alberi, J. Simon, A. Mascarenhas, et al., Kinetically limited growth of GaAsBi by molecular-beam epitaxy, J. Cryst. Growth 338 (2012) 107-110.
  28. [58] R. Erni, M. Rossell, C. Kisielowski and U. Dahmen, Phys. Rev. Lett. 102, 1 (2009).
  29. [13] G. Ciatto, M. Thomasset, F. Glas, X. Lu and T. Tiedje, Phys. Rev. B - Condens. Matter Mater. Phys. 82, 1 (2010).
  30. [16] N. Knaub, A. Beyer, T. Wegele, P. Ludewig and K. Volz, J. Cryst. Growth 433, 89 (2015).
  31. [22] A. Moto, S. Tanaka, N. Ikoma, T. Tanabe, S. Takagishi, Metalorganic vapor phase epitaxial growth of GaNAs using tertiarybutylarsine (TBA) and dimethylhydrazine (DMHy), Jpn. J. Appl. Phys. 38 (1999) 1015-1018.
  32. [9] K. Oe, Metalorganic vapor phase epitaxial growth of metastable GaAs1 xBix alloy, J. Cryst. Growth 237-239 (2002) 1481-1485.
  33. [60] E. Okunishi, H. Sawada and Y. Kondo, Micron 43, 538 (2012).
  34. [14] K. Volz, J. Koch, F. Höhnsdorf, B. Kunert, W. Stolz, MOVPE growth of dilute nitride III/V semiconductors using all liquid metalorganic precursors, J. Cryst. Growth 311 (2009) 2418-2426.
  35. [8] P. Ludewig, N. Knaub, W. Stolz, K. Volz, MOVPE growth of Ga(AsBi)/GaAs multiquantum well structures, J. Cryst. Growth 370 (2012) 186-190.
  36. [4] M. Yoshimoto, W. Huang, G. Feng, K. Oe, New semiconductor alloy GaNAsBi with temperature-insensitive bandgap, Phys. Status Solidi 243 (2006) 1421-1425.
  37. [11] M. Yoshimoto, W. Huang, Y. Takehara, J. Saraie, A. Chayahara, Y. Horino, et al., New semiconductor GaNAsBi alloy grown by molecular beam epitaxy, Jpn. J. Appl. Phys. 43 (2004) L845-L847.
  38. [18] J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, J. Oila, K. Saarinen, Observation of defect complexes containing Ga vacancies in GaAsN, Appl. Phys. Lett. 82 (2003) 40.
  39. [41] W. Shan, W. Walukiewicz, J. Ager, E. Haller, J. Geisz, D. Friedman, J. Olson and S. Kurtz, Phys. Rev. Lett. 82, 1221 (1999).
  40. [62] D. Van Dyck and M. Op de Beeck, Ultramicroscopy 64, 99 (1996).
  41. [25] K. Volz, D. Lackner, I. Németh, B. Kunert, W. Stolz, C. Baur, et al., Optimization of annealing conditions of (GaIn)(NAs) for solar cell applications, J. Cryst. Growth 310 (2008) 2222-2228.
  42. [51] G. B. Stringfellow, Organometallic vapor-phase epitaxy: theory and practice, Academic Press, 2 edition, 1998.
  43. [15] W. Li, M. Pessa, T. Ahlgren, J. Decker, Origin of improved luminescence efficiency after annealing of Ga(In)NAs materials grown by molecular-beam epitaxy, Appl. Phys. Lett. 79 (2001) 1094.
  44. [19] K. Volz, T. Torunski, B. Kunert, O. Rubel, S. Nau, S. Reinhard, et al., Specific structural and compositional properties of (GaIn)(NAs) and their influence on optoelectronic device performance, J. Cryst. Growth 272 (2004) 739-747.
  45. [74] A. Rosenauer and M. Schowalter, STEMSIM-a New Software Tool for Simulation of STEM HAADF Z-Contrast Imaging, in Microsc. Semicond. Mater. 2007, pages 170-172, Springer Netherlands, Dordrecht, 2007.
  46. [22] P. Ludewig, Z. Bushell, L. Nattermann, N. Knaub, W. Stolz and K. Volz, J. Cryst. Growth 396, 95 (2014).
  47. [33] C. A. Broderick, M. Usman, S. J. Sweeney and E. P. O'Reilly, Semicond. Sci. Technol. 27, 094011 (2012).
  48. [23] D.E. Aspnes, Third-derivative modulation spectroscopy with low-field electroreflectance, Surf. Sci. 37 (1973) 418-442.
  49. [3] M. Usman, C.A. Broderick, A. Lindsay, E.P. O'Reilly, Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs, Phys. Rev. B 84 (2011) 245202.
  50. [47] S. J. Pennycook, Ultramicroscopy 30, 58 (1989).
  51. [48] S. Pennycook and D. Jesson, Ultramicroscopy 37, 14 (1991).
  52. [63] J. M. Cowley and Y. Huang, Ultramicroscopy 40, 171 (1992).
  53. [49] P. Hartel, Ultramicroscopy 63, 93 (1996).
  54. [55] M. Haider, Ultramicroscopy 75, 53 (1998).
  55. [57] M. Haider, Ultramicroscopy 81, 163 (2000).
  56. [69] K. Ishizuka, Ultramicroscopy 90, 71 (2002).
  57. [80] M. P. J. Punkkinen, P. Laukkanen, M. Kuzmin, H. Levämäki, J. Lång, M. Tuominen, M. Yasir, J. Dahl, S. Lu, E. K. Delczeg-Czirjak, L. Vitos and K. Kokko, Semicond. Sci. Technol. 29, 115007 (2014).
  58. [8] V. Pačebutas, K. Bertulis, L. Dapkus, G. Aleksejenko, A. Krotkus, K. M. Yu and W. Walukiewicz, Semicond. Sci. Technol. 22, 819 (2007).
  59. [70] R. F. Loane, P. Xu and J. Silcox, Acta Crystallogr. Sect. A Found. Crystallogr. 47, 267 (1991).
  60. [7] B. Fluegel, S. Francoeur, A. Mascarenhas, S. Tixier, E. Young and T. Tiedje, Phys. Rev. Lett. 97, 067205 (2006).
  61. [77] D. Freedman and P. Diaconis, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 57, 453 (1981).


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten