Summary:
This thesis is dedicated to the investigation of properties of computer-generated monodisperse and polydisperse three-dimensional hard-sphere packings, frictional and frictionless.
For frictionless packings, we (i) assess their total (fluid) entropy in a wide range of packing densities (solid volume fractions), (ii) investigate the structure of their phase space, (iii) and estimate several characteristic densities (the J-point, the ideal glass transition density, and the ideal glass density).
For frictional packings, we estimate the Edwards entropy in a wide range of densities.
We utilize the Lubachevsky–Stillinger, Jodrey–Tory, and force-biased packing generation algorithms.
We always generate packings of 10000 particles in cubic boxes with periodic boundary conditions.
For estimation of the Edwards entropy, we also use experimentally produced and reconstructed packings of fluidized beds.
In polydisperse cases, we use the log-normal, Pareto, and Gaussian particle diameter distributions with polydispersities (relative radii standard deviations) from 0.05 (5%) to 0.3 (30%) in steps of 0.05.
This work consists of six chapters, each corresponding to a published paper.
In the first chapter, we introduce a method to estimate the probability to insert a particle in a packing (insertion probability) through the so-called
pore-size (nearest neighbour) distribution. Under certain assumptions about the structure of the phase space, we link this probability to the (total) entropy of packings. In this chapter, we use only frictionless monodisperse hard-sphere packings. We conclude that the two characteristic particle volume fractions (or densities, φ) often associated with the Random Close Packing limit,
φ ≈ 0.64 and φ ≈ 0.65, may refer to two distinct phenomena:
the J-point and the Glass Close Packing limit (the ideal glass density), respectively.
In the second chapter, we investigate the behaviour of jamming densities of
frictionless polydisperse packings produced with different packing generation times.
Packings produced quickly are structurally closer to Poisson packings and jam at the J-point (φ ≈ 0.64 for monodisperse packings).
Jamming densities (inherent structure densities) of packings with sufficient
polydispersity that were produced slowly approach the glass close packing (GCP) limit.
Monodisperse packings overcome the GCP limit (φ ≈ 0.65) because they can incorporate crystalline regions. Their jamming densities eventually approach
the face-centered cubic (FCC) / hexagonal close packing (HCP) crystal density
φ = π/(3 √2) ≈ 0.74.
These results support the premise that φ ≈ 0.64 and φ ≈ 0.65 in the monodisperse case may refer to the J-point and the GCP limit, respectively.
Frictionless random jammed packings can be produced with any density in-between.
In the third chapter, we add one more intermediate step to the procedure from the second chapter.
We take the unjammed (initial) packings in a wide range of densities from the second chapter, equilibrate them, and only then jam (search for their inherent structures).
Thus, we investigate the structure of their phase space.
We determine the J-point, ideal glass transition density, and ideal glass density.
We once again recover φ ≈ 0.64 as the J-point and φ ≈ 0.65 as the GCP limit for monodisperse packings. The ideal glass transition density for monodisperse packings is estimated at φ ≈ 0.585.
In the fourth chapter, we demonstrate that the excess entropies of the polydisperse hard-sphere fluid at our estimates of the ideal glass transition densities do not significantly depend on the particle size distribution.
This suggests a simple procedure to estimate the ideal glass transition density
for an arbitrary particle size distribution by solving an equation, which requires that the excess fluid entropy shall equal to some universal value
characteristic of the ideal glass transition density.
Excess entropies for an arbitrary particle size distribution and density can be
computed through equations of state, for example the Boublík–Mansoori–Carnahan–Starling–Leland (BMCSL) equation.
In the fifth chapter, we improve the procedure from the first chapter. We retain the insertion probability estimation from the pore-size distribution, but switch from the initial assumptions about the structure of the phase space to a more advanced Widom particle insertion method, which for hard spheres links the insertion probability to the excess chemical potential. With the chemical potential at hand, we can estimate the excess fluid entropy, which complies well with theoretical predictions from the BMCSL equation of state.
In the sixth chapter, we extend the Widom particle insertion method from the fifth chapter as well as the insertion probability estimation method
from the first chapter to determine the upper bound on the Edwards entropy per particle in monodisperse frictional packings. The Edwards entropy counts the number of mechanically stable configurations at a given density (density interval). We demonstrate that the Edwards entropy estimate is maximum at the Random Loose Packing (RLP) limit (φ ≈ 0.55) and decreases with density increase. In this chapter, we accompany computer-generated packings with experimentally produced and reconstructed ones.
Overall, this study extends the understanding of the glass transition, jamming,
and the Edwards entropy behavior in the system of hard spheres. The results can help comprehend these phenomena in more complex molecular, colloidal, and granular systems.
Bibliographie / References
- [5] T. C. HALES, M. ADAMS, G. BAUER, D. TAT DANG, J. HARRISON, T. LE HOANG, C. KALISZYK, V. MAGRON, S. MCLAUGHLIN, T. TAT NGUYEN, T. QUANG NGUYEN, T. NIPKOW, S. OBUA, J. PLESO, J. RUTE, A. SOLOVYEV, A. HOAI THI TA, T. N. TRAN, D. THI TRIEU, J. URBAN, K. KHAC VU, and R. ZUMKELLER. “A formal proof of the Kepler conjecture”. arXiv e-prints 1501, arXiv:1501.02155, 2015. (see p. 1)
- [211] V. BECKER and K. KASSNER. “Simulations support protocol independency of the granular temperature”. arXiv e-prints, arXiv:1506.03288, 2015. (see p. 121)
- [87] M. ALONSO, M. SATOH, and K. MIYANAMI. “Void-size distribution in two-dimensional random packings of equal-sized disks”. The Canadian Journal of Chemical Engineering 70, 28 - 32, 1992. DOI: 10.1002/cjce.5450700105 (see pp. 14, 21, 101, 105, 135)
- [50] F. H. STILLINGER and Z. W. SALSBURG. “Limiting polytope geometry for rigid rods, disks, and spheres”. Journal of Statistical Physics 1, 179 - 225, 1969. DOI: 10.1007/BF01007250 (see pp. 5, 6)
- [95] B. D. LUBACHEVSKY and F. H. STILLINGER. “Geometric properties of random disk packings”. Journal of Statistical Physics 60, 561 - 583, 1990. DOI: 10.1007/BF01025983 (see pp. 15, 16, 25, 40, 71, 91, 109, 126)
- [89] I. SCHENKER, F. FILSER, M. HÜTTER, and L. GAUCKLER. “The influence of the degree of heterogeneity on the elastic properties of random sphere packings”. Granular Matter 14, 333 - 340, 2012. DOI: 10.1007/s10035-012-0316-5 (see pp. 14, 21, 27, 101, 105, 135)
- [212] P. YU, S. FRANK-RICHTER, A. BÖRNGEN, and M. SPERL. “Monitoring three-dimensional packings in microgravity”. Granular Matter 16, 165 - 173, 2014. DOI: 10.1007/s10035-013-0479-8 (see p. 122)
- [97] M. BARGIEŁ and J. MOS´CI N´SKI. “C-language program for the irregular close packing of hard spheres”. Computer Physics Communications 64, 183 - 192, 1991. DOI: 10.1016/0010-4655(91) 90060-X (see pp. 15, 16, 70)
- [135] B. D. LUBACHEVSKY. “How to simulate billiards and similar systems”. Journal of Computational Physics 94, 255 - 283, 1991. DOI: 10.1016/0021-9991(91)90222-7 (see pp. 40, 71, 91, 109, 126)
- [38] C. A. ANGELL. “Perspective on the glass transition”. Journal of Physics and Chemistry of Solids 49, 863 - 871, 1988. DOI: 10.1016/0022-3697(88)90002-9 (see pp. 4, 6, 86)
- [44] S. F. EDWARDS and R. B. S. OAKESHOTT. “Theory of powders”. Physica A: Statistical and Theoretical Physics 157, 1080 - 1090, 1989. DOI: 10.1016/0378-4371(89)90034-4 (see pp. 4, 9, 10, 14, 15, 19, 20, 114, 120, 134)
- [82] P. GIAQUINTA and G. GIUNTA. “About entropy and correlations in a fluid of hard spheres”. Physica A: Statistical and Theoretical Physics 187, 145 - 158, 1992. DOI: 10.1016/0378-4371(92)90415-M (see p. 14)
- [75] Y. JIN and H. A. MAKSE. “A first-order phase transition defines the random close packing of hard spheres”. Physica A: Statistical and Theoretical Physics 389, 5362 - 5379, 2010. DOI: 10.1016/j. physa.2010.08.010 (see pp. 14, 15, 17, 26 - 29, 38, 53, 54, 66, 123)
- 1. A. DANEYKO, D. HLUSHKOU, V. BARANAU, S. KHIREVICH, A. SEIDEL-MORGENSTERN and U. TALLAREK. Computational investigation of longitudinal diffusion, eddy dispersion, and trans-particle mass transfer in bulk, random packings of core - shell particles with varied shell thickness and shell diffusion coefficient. Journal of Chromatography A, 1407: 139 - 156, 2015. DOI: 10.1016/j.chroma.2015.06.047
- [31] A. DONEV, S. TORQUATO, F. H. STILLINGER, and R. CONNELLY. “A linear programming algorithm to test for jamming in hard-sphere packings”. Journal of Computational Physics 197, 139 - 166, 2004. DOI: 10.1016/j.jcp.2003.11.022 (see pp. 3, 16, 31, 38, 69, 89)
- [92] A. DONEV, S. TORQUATO, and F. H. STILLINGER. “Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles.” Journal of Computational Physics 202, 765 - 793, 2005. DOI: 10.1016/j.jcp.2004.08.025 (see pp. 14, 16, 19, 109)
- [91] D. STOYAN, A. WAGNER, H. HERMANN, and A. ELSNER. “Statistical characterization of the pore space of random systems of hard spheres”. Journal of Non-Crystalline Solids 357, 1508 - 1515, 2011. DOI: 10.1016/j.jnoncrysol.2010.12.033 (see pp. 14, 21, 101, 105, 135)
- [76] C. BRISCOE, C. SONG, P. WANG, and H. A. MAKSE. “Jamming III: Characterizing randomness via the entropy of jammed matter”. Physica A: Statistical and Theoretical Physics 389, 3978 - 3999, 2010. DOI: 10.1016/j.physa.2010.05.054 (see pp. 14, 19, 29, 32)
- [48] P. WANG, C. SONG, Y. JIN, and H. A. MAKSE. “Jamming II: Edwards' statistical mechanics of random packings of hard spheres”. Physica A: Statistical and Theoretical Physics 390, 427 - 455, 2011. DOI: 10.1016/j.physa.2010.10.017 (see pp. 4, 5, 9, 10, 14, 16, 19, 39)
- [105] S. ALEXANDER. “Amorphous solids: their structure, lattice dynamics and elasticity”. Physics Reports 296, 65 - 236, 1998. DOI: 10.1016/S0370-1573(97)00069-0 (see p. 16)
- [71] R. MONASSON and O. POULIQUEN. “Entropy of particle packings: An illustration on a toy model”. Physica A: Statistical and Theoretical Physics 236, 395 - 410, 1997. DOI: 10.1016/S0378-4371(96) 00369-X (see pp. 10, 121, 124)
- [122] D. HLUSHKOU, S. KHIREVICH, V. APANASOVICH, A. SEIDEL-MORGENSTERN, and U. TALLAREK. “Pore-scale dispersion in electrokinetic flow through a random sphere packing”. Analytical Chemistry 79, 113 - 121, 2007. DOI: 10.1021/ac061168r (see p. 27)
- [18] A. DANEYKO, A. HÖLTZEL, S. KHIREVICH, and U. TALLAREK. “Influence of the particle size distribution on hydraulic permeability and eddy dispersion in bulk packings”. Analytical Chemistry 83, 3903 - 3910, 2011. DOI: 10.1021/ac200424p (see pp. 2, 100)
- [27] B. A. KLUMOV, Y. JIN, and H. A. MAKSE. “Structural properties of dense hard sphere packings”. Journal of Physical Chemistry B 118, 10761 - 10766, 2014. DOI: 10.1021/jp504537n (see p. 3)
- [100] J. D. BERNAL. “Geometry of the structure of monatomic liquids”. Nature 185, 68 - 70, 1960. DOI: 10.1038/185068a0 (see pp. 15, 29)
- [10] J. D. BERNAL and J. MASON. “Packing of spheres: Co-ordination of randomly packed spheres”. Nature 188, 910 - 911, 1960. DOI: 10.1038/188910a0 (see pp. 1, 15, 29, 38, 53, 54, 66)
- [40] P. G. DEBENEDETTI and F. H. STILLINGER. “Supercooled liquids and the glass transition”. Nature 410, 259 - 267, 2001. DOI: 10.1038/35065704 (see pp. 4, 6, 86)
- [19] M. CLUSEL, E. I. CORWIN, A. O. N. SIEMENS, and J. BRUJIC´. “A 'granocentric' model for random packing of jammed emulsions”. Nature 460, 611 - 615, 2009. DOI: 10.1038/nature08158 (see pp. 2, 55, 136)
- [147] R. NI, M. A. COHEN-STUART, and M. DIJKSTRA. “Pushing the glass transition towards random close packing using self-propelled hard spheres”. Nature Communications 4, 2704, 2013. DOI: 10.1038/ncomms3704 (see pp. 69, 93)
- [106] N. XU and E. S. C. CHING. “Effects of particle-size ratio on jamming of binary mixtures at zero temperature”. Soft Matter 6, 2944 - 2948, 2010. DOI: 10.1039/b926696h (see pp. 16, 18, 39)
- [112] A. MEHTA. “Spatial, dynamical and spatiotemporal heterogeneities in granular media”. Soft Matter 6, 2875 - 2883, 2010. DOI: 10.1039/b926809j (see p. 16)
- [133] M. PICA CIAMARRA, M. NICODEMI, and A. CONIGLIO. “Recent results on the jamming phase diagram”. Soft Matter 6, 2871 - 2874, 2010. DOI: 10.1039/b926810c (see pp. 38, 45, 51, 53, 69, 73, 93, 100, 143)
- [120] G. W. DELANEY, T. D. MATTEO, and T. ASTE. “Combining tomographic imaging and DEM simulations to investigate the structure of experimental sphere packings”. Soft Matter 6, 2992 - 3006, 2010. DOI: 10.1039/B927490A (see p. 27)
- [111] L. E. SILBERT. “Jamming of frictional spheres and random loose packing”. Soft Matter 6, 2918 - 2924, 2010. DOI: 10.1039/c001973a (see pp. 16, 124)
- [93] A. V. KYRYLYUK, M. A. VAN DE HAAR, L. ROSSI, A. WOUTERSE, and A. P. PHILIPSE. “Isochoric ideality in jammed random packings of non-spherical granular matter”. Soft Matter 7, 1671 - 1674, 2011. DOI: 10.1039/c0sm00754d (see pp. 14, 19)
- [143] K. A. NEWHALL, I. JORJADZE, E. VANDEN-EIJNDEN, and J. BRUJIC´. “A statistical mechanics framework captures the packing of monodisperse particles”. Soft Matter 7, 11518 - 11525, 2011. DOI: 10.1039/c1sm06243c (see p. 55)
- [46] M. PICA CIAMARRA, P. RICHARD, M. SCHRÖTER, and B. P. TIGHE. “Statistical mechanics for static granular media: open questions”. Soft Matter 8, 9731 - 9737, 2012. DOI: 10.1039/C2SM06898B (see pp. 4, 10, 53, 70, 121)
- 1. V. BARANAU, D. HLUSHKOU, S. KHIREVICH and U. TALLAREK. Pore-size entropy of random hard-sphere packings. Soft Matter, 9.12: 3361 - 3372, 2013. DOI: 10.1039/C3SM27374A
- 2. V. BARANAU and U. TALLAREK. Random-close packing limits for monodisperse and polydisperse hard spheres. Soft Matter, 10.21: 3826 - 3841, 2014. DOI: 10.1039/C3SM52959B
- [63] S. ZHAO and M. SCHRÖTER. “Measuring the configurational temperature of a binary disc packing”. Soft Matter 10, 4208 - 4216, 2014. DOI: 10.1039/C3SM53176G (see pp. 10, 121, 124, 134, 143)
- 3. V. BARANAU and U. TALLAREK. On the jamming phase diagram for frictionless hard-sphere packings. Soft Matter, 10.39: 7838 - 7848, 2014. DOI: 10.1039/C4SM01439A
- 2. K. HORMANN, V. BARANAU, D. HLUSHKOU, A. HÖLTZEL and U. TALLAREK. Topological analysis of non-granular, disordered porous media: determination of pore connectivity, pore coordination, and geometric tortuosity in physically reconstructed silica monoliths New Journal of Chemistry, 40.5: 4187 - 4199, 2016. DOI: 10.1039/C5NJ02814K
- [165] T. MÜLLNER, K. UNGER, and U. TALLAREK. “Characterization of microscopic disorder in reconstructed porous materials and assessment of mass transport-relevant structural descriptors”. New Journal of Chemistry accepted, -, 2016. DOI: 10.1039/c5nj03346b (see p. 100)
- 6. V. BARANAU, S.-C. ZHAO, M. SCHEEL, U. TALLAREK and M. SCHRÖTER. Upper bound on the Edwards entropy in frictional monodisperse hard-sphere packings. Soft Matter, 12.17: 3991 - 4006, 2016. DOI: 10.1039/C6SM00567E
- [30] A. DONEV. “Jamming in hard sphere and disk packings”. Journal of Applied Physics 95, 989 - 999, 2004. DOI: 10.1063/1.1633647 (see pp. 3, 16, 38, 69, 89)
- [57] W. G. HOOVER and F. H. REE. “Melting transition and communal entropy for hard spheres”. The Journal of Chemical Physics 49, 3609 - 3617, 1968. DOI: 10.1063/1.1670641 (see pp. 7, 66, 74, 78, 100, 124)
- [154] T. BOUBLÍK. “Hard-sphere equation of state”. The Journal of Chemical Physics 53, 471 - 472, 1970. DOI: 10.1063/1.1673824 (see pp. 80, 81, 86, 87, 97, 101, 104)
- [156] G. A. MANSOORI, N. F. CARNAHAN, K. E. STARLING, and T. W. LELAND. “Equilibrium thermodynamic properties of the mixture of hard spheres”. The Journal of Chemical Physics 54, 1523 - 1525, 1971. DOI: 10.1063/1.1675048 (see pp. 80, 86, 87, 101, 104, 126)
- [53] W. W. WOOD. “Note on the free volume equation of state for hard spheres”. The Journal of Chemical Physics 20, 1334 - 1334, 1952. DOI: 10.1063/1.1700747 (see pp. 6, 107)
- [60] F. H. STILLINGER, E. A. DIMARZIO, and R. L. KORNEGAY. “Systematic approach to explanation of the rigid disk phase transition”. The Journal of Chemical Physics 40, 1564 - 1576, 1964. DOI: 10.1063/1.1725362 (see pp. 8, 42, 67, 69, 89, 90)
- [9] Z. W. SALSBURG and W. W. WOOD. “Equation of state of classical hard spheres at high density”. The Journal of Chemical Physics 37, 798 - 804, 1962. DOI: 10.1063/1.1733163 (see pp. 1, 5, 6, 16, 30, 31, 38, 39, 41, 43, 58, 59, 61, 68, 71, 92, 93, 107, 126, 129)
- [157] J. H. GIBBS and E. A. DIMARZIO. “Nature of the Glass Transition and the Glassy State”. The Journal of Chemical Physics 28, 373 - 383, 1958. DOI: 10.1063/1.1744141 (see p. 86)
- [51] J. G. KIRKWOOD. “Critique of the free volume theory of the liquid state”. The Journal of Chemical Physics 18, 380 - 382, 1950. DOI: 10.1063/1.1747635 (see pp. 6, 107)
- [52] R. J. BUEHLER, R. H. WENTORF JR., J. O. HIRSCHFELDER, and C. F. CURTISS. “The free volume for rigid sphere molecules”. The Journal of Chemical Physics 19, 61 - 71, 1951. DOI: 10.1063/1. 1747991 (see pp. 6, 107)
- [78] V. S. KUMAR and V. KUMARAN. “Voronoi cell volume distribution and configurational entropy of hard-spheres”. The Journal of Chemical Physics 123, 114501, 2005. DOI: 10.1063/1.2011390 (see p. 14)
- [28] G. PARISI and F. ZAMPONI. “The ideal glass transition of hard spheres”. The Journal of Chemical Physics 123, 144501, 2005. DOI: 10.1063/1.2041507 (see pp. 3, 8, 86, 100, 110)
- [151] S. PRESTIPINO, F. SAIJA, and P. V. GIAQUINTA. “Phase diagram of softly repulsive systems: The Gaussian and inverse-power-law potentials”. The Journal of Chemical Physics 123, 144110, 2005. DOI: 10.1063/1.2064639 (see p. 80)
- [152] C. N. LIKOS, B. M. MLADEK, D. GOTTWALD, and G. KAHL. “Why do ultrasoft repulsive particles cluster and crystallize? Analytical results from density-functional theory”. The Journal of Chemical Physics 126, 224502, 2007. DOI: 10.1063/1.2738064 (see p. 80)
- [77] A. DONEV, F. H. STILLINGER, and S. TORQUATO. “Configurational entropy of binary hard-disk glasses: Nonexistence of an ideal glass transition”. The Journal of Chemical Physics 127, 124509, 2007. DOI: 10.1063/1.2775928 (see pp. 14, 31, 89)
- [137] S. TORQUATO and F. H. STILLINGER. “Toward the jamming threshold of sphere packings: Tunneled crystals”. Journal of Applied Physics 102, 093511, 2007. DOI: 10.1063/1.2802184 (see pp. 41, 53, 68, 70, 123)
- [140] R. S. FARR and R. D. GROOT. “Close packing density of polydisperse hard spheres”. The Journal of Chemical Physics 131, 244104, 2009. DOI: 10.1063/1.3276799 (see p. 52)
- [36] L. FILION, M. HERMES, R. NI, and M. DIJKSTRA. “Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation techniques”. The Journal of Chemical Physics 133, 4115, 2010. DOI: 10.1063/1.3506838; (see pp. 4, 66, 74, 92, 100, 110, 124)
- [138] Y. JIAO, F. H. STILLINGER, and S. TORQUATO. “Nonuniversality of density and disorder in jammed sphere packings”. Journal of Applied Physics 109, 013508, 2011. DOI: 10.1063/1.3524489 (see pp. 44, 53, 70, 92)
- [155] V. OGARKO and S. LUDING. “Equation of state and jamming density for equivalent bi- and polydisperse, smooth, hard sphere systems”. The Journal of Chemical Physics 136, 124508, 2012. DOI: 10.1063/1.3694030 (see pp. 80, 81, 86 - 88, 93, 96, 97, 101, 104, 105)
- [149] F. H. STILLINGER. “Phase transitions in the Gaussian core system”. The Journal of Chemical Physics 65, 3968 - 3974, 1976. DOI: 10.1063/1.432891 (see p. 80)
- [161] D. FRENKEL and A. J. C. LADD. “New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres”. The Journal of Chemical Physics 81, 3188 - 3193, 1984. DOI: 10.1063/1.448024 (see pp. 86, 87, 97, 105)
- [160] V. OGARKO, N. RIVAS, and S. LUDING. “Communication: Structure characterization of hard sphere packings in amorphous and crystalline states”. The Journal of Chemical Physics 140, 211102, 2014. DOI: 10.1063/1.4880236 (see pp. 86, 100)
- [8] H. LIASNEUSKI, D. HLUSHKOU, S. KHIREVICH, A. HÖLTZEL, U. TALLAREK, and S. TORQUATO. “Impact of microstructure on the effective diffusivity in random packings of hard spheres”. Journal of Applied Physics 116, 034904, 2014. DOI: 10.1063/1.4889821 (see pp. 1, 100)
- 4. V. BARANAU and U. TALLAREK. How to predict the ideal glass transition density in polydisperse hard-sphere packings. The Journal of Chemical Physics, 143.4: 044501, 2015. DOI: 10.1063/1.4927077
- 5. V. BARANAU and U. TALLAREK. Chemical potential and entropy in monodisperse and polydisperse hard-sphere packings using Widom's particle insertion method and a pore size distribution-based insertion probability. The Journal of Chemical Physics, 144.21: 214503, 2016. DOI: 10.1063/1.4953079
- [37] R. J. SPEEDY. “The hard sphere glass transition”. Molecular Physics 95, 169 - 178, 1998. DOI: 10.1080/00268979809483148 (see pp. 4, 6, 8, 110)
- [98] J. MOS´CIN´ SKI, M. BARGIEŁ, Z. A. RYCERZ, and P. W. M. JACOBS. “The force-biased algorithm for the irregular close packing of equal hard spheres”. Molecular Simulation 3, 201 - 212, 1989. DOI: 10.1080/08927028908031373 (see pp. 15, 17, 40, 70, 91, 109)
- [235] T. FINGER, M. SCHRÖTER, and R. STANNARIUS. “The mechanism of long-term coarsening of granular mixtures in rotating drums”. New Journal of Physics 17, 093023, 2015. DOI: 10.1088/ 1367-2630/17/9/093023 (see p. 143)
- [11] G. D. SCOTT and D. M. KILGOUR. “The density of random close packing of spheres”. Journal of Physics D: Applied Physics 2, 863 - 866, 1969. DOI: 10.1088/0022-3727/2/6/311 (see pp. 2, 15, 29, 38, 66)
- [159] G. L. HUNTER and E. R. WEEKS. “The physics of the colloidal glass transition”. Reports on Progress in Physics 75, 066501, 2012. DOI: 10.1088/0034-4885/75/6/066501 (see p. 86)
- [34] C. VALERIANI, E. SANZ, E. ZACCARELLI, W. C. K. POON, M. E. CATES, and P. N. PUSEY. “Crystallization and aging in hard-sphere glasses”. Journal of Physics: Condensed Matter 23, 194117, 2011. DOI: 10.1088/0953-8984/23/19/194117 (see pp. 3, 7, 66, 74, 92, 100, 110, 124)
- [219] T. ASTE, M. SAADATFAR, and T. J. SENDEN. “Local and global relations between the number of contacts and density in monodisperse sphere packs”. Journal of Statistical Mechanics: Theory and Experiment 2006, P07010, 2006. DOI: 10.1088/1742-5468/2006/07/P07010 (see p. 123)
- [108] P. WANG, C. SONG, Y. JIN, K. WANG, and H. A. MAKSE. “Distribution of volumes and coordination numbers in jammed matter: mesoscopic ensemble”. Journal of Statistical Mechanics: Theory and Experiment, P12005, 2010. DOI: 10.1088/1742-5468/2010/12/P12005 (see pp. 16, 27, 39)
- [148] P. N. PUSEY, E. ZACCARELLI, C. VALERIANI, E. SANZ, W. C. K. POON, and M. E. CATES. “Hard spheres: crystallization and glass formation”. Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences 367, 4993 - 5011, 2009. DOI: 10.1098/rsta.2009. 0181 (see pp. 74, 124)
- [150] F. H. STILLINGER and T. A. WEBER. “Hidden structure in liquids”. Physical Review A 25, 978 - 989, 1982. DOI: 10.1103/PhysRevA.25.978 (see pp. 80, 129)
- [131] J. G. BERRYMAN. “Random close packing of hard spheres and disks”. Physical Review A 27, 1053 - 1061, 1983. DOI: 10.1103/PhysRevA.27.1053 (see pp. 38, 53, 54, 66)
- [96] W. S. JODREY and E. M. TORY. “Computer simulation of close random packing of equal spheres”. Physical Review A 32, 2347 - 2351, 1985. DOI: 10.1103/PhysRevA.32.2347 (see pp. 15, 16, 18, 70)
- [83] S. TORQUATO, B. LU, and J. RUBINSTEIN. “Nearest-neighbor distribution functions in many-body systems”. Physical Review A 41, 2059 - 2075, 1990. DOI: 10.1103/PhysRevA.41.2059 (see pp. 14, 21, 27, 101, 105, 106, 108, 110, 135, 138)
- [84] B. LU and S. TORQUATO. “Nearest-surface distribution functions for polydispersed particle systems”. Physical Review A 45, 5530 - 5544, 1992. DOI: 10.1103/PhysRevA.45.5530 (see pp. 14, 21, 27, 101, 105, 106, 135, 138)
- [153] J. D. WEEKS. “Volume change on melting for systems with inverse-power-law interactions”. Physical Review B 24, 1530 - 1535, 1981. DOI: 10.1103/PhysRevB.24.1530 (see p. 80)
- [118] P. J. STEINHARDT, D. R. NELSON, and M. RONCHETTI. “Bond-orientational order in liquids and glasses”. Physical Review B 28, 784 - 805, 1983. DOI: 10.1103/PhysRevB.28.784 (see pp. 26, 49)
- [24] B. A. KLUMOV, S. A. KHRAPAK, and G. E. MORFILL. “Structural properties of dense hard sphere packings”. Physical Review B 83, 184105, 2011. DOI: 10.1103/PhysRevB.83.184105 (see pp. 3, 14, 29, 38, 49, 51, 54, 66, 74 - 77, 123)
- [22] A. V. ANIKEENKO, N. N. MEDVEDEV, and T. ASTE. “Structural and entropic insights into the nature of the random-close-packing limit”. Physical Review E 77, 031101, 2008. DOI: 10.1103/PhysRevE. 77.031101 (see pp. 3, 14, 17, 19, 26, 29, 33, 38, 39, 49, 51, 54, 66, 69, 74 - 77)
- [56] W. VAN MEGEN and S. M. UNDERWOOD. “Glass transition in colloidal hard spheres: Measurement and mode-coupling-theory analysis of the coherent intermediate scattering function”. Physical Review E 49, 4206 - 4220, 1994. DOI: 10.1103/PhysRevE.49.4206 (see pp. 7, 74, 110)
- [214] L. E. SILBERT, D. ERTAS¸, G. S. GREST, T. C. HALSEY, and D. LEVINE. “Geometry of frictionless and frictional sphere packings”. Physical Review E 65, 031304, 2002. DOI: 10.1103/PhysRevE.65. 031304 (see p. 123)
- [110] A. DONEV, S. TORQUATO, and F. H. STILLINGER. “Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings”. Physical Review E 71, 011105, 2005. DOI: 10.1103/PhysRevE.71.011105 (see pp. 16, 25, 27, 39)
- [102] N. XU, J. BLAWZDZIEWICZ, and C. S. O'HERN. “Random close packing revisited: Ways to pack frictionless disks”. Physical Review E 71, 061306, 2005. DOI: 10.1103/PhysRevE.71.061306 (see pp. 15, 16, 18, 29, 31, 39)
- [215] H. P. ZHANG and H. A. MAKSE. “Jamming transition in emulsions and granular materials”. Physical Review E 72, 011301, 2005. DOI: 10.1103/PhysRevE.72.011301 (see p. 123)
- [49] M. SKOGE, A. DONEV, F. H. STILLINGER, and S. TORQUATO. “Packing hyperspheres in highdimensional Euclidean spaces”. Physical Review E 74, 041127, 2006. DOI: 10.1103/PhysRevE.74. 041127 (see pp. 5, 6, 16, 25, 29 - 31, 44, 49, 66, 71, 74, 76, 78, 86, 91 - 93, 100, 110, 124, 126)
- [103] G. GAO, J. BŁAWZDZIEWICZ, and C. S. O'HERN. “Frequency distribution of mechanically stable disk packings”. Physical Review E 74, 061304, 2006. DOI: 10.1103/PhysRevE.74.061304 (see p. 15)
- [216] K. SHUNDYAK, M. VAN HECKE, and W. VAN SAARLOOS. “Force mobilization and generalized isostaticity in jammed packings of frictional grains”. Physical Review E 75, 010301, 2007. DOI: 10.1103/PhysRevE.75.010301 (see pp. 123, 124)
- [80] T. ASTE and T. DI MATTEO. “Emergence of Gamma distributions in granular materials and packing models”. Physical Review E 77, 021309, 2008. DOI: 10.1103/PhysRevE.77.021309 (see pp. 14, 15, 19, 20, 26)
- [65] S. HENKES and B. CHAKRABORTY. “Statistical mechanics framework for static granular matter”. Physical Review E 79, 061301, 2009. DOI: 10.1103/PhysRevE.79.061301 (see pp. 10, 121)
- [29] L. BERTHIER and T. A. WITTEN. “Glass transition of dense fluids of hard and compressible spheres”. Physical Review E 80, 021502, 2009. DOI: 10.1103/PhysRevE.80.021502 (see pp. 3, 4, 7 - 9, 66, 67, 76, 86, 87, 91 - 93, 100, 102, 105, 110, 113)
- [74] S. MCNAMARA, P. RICHARD, S. K. DE RICHTER, G. LE CAER, and R. DELANNAY. “Measurement of granular entropy”. Physical Review E 80, 031301, 2009. DOI: 10.1103/PhysRevE.80.031301 (see pp. 10, 121, 124, 143)
- [68] G. GAO, J. BLAWZDZIEWICZ, C. S. O'HERN, and M. SHATTUCK. “Experimental demonstration of nonuniform frequency distributions of granular packings”. Physical Review E 80, 061304, 2009. DOI: 10.1103/PhysRevE.80.061304 (see pp. 10, 121, 124)
- [54] S. TORQUATO and Y. JIAO. “Robust algorithm to generate a diverse class of dense disordered and ordered sphere packings via linear programming”. Physical Review E 82, 061302, 2010. DOI: 10.1103/PhysRevE.82.061302 (see pp. 6, 42, 44, 47, 53, 67, 69, 70, 89, 92)
- [62] R. K. BOWLES and S. S. ASHWIN. “Edwards entropy and compactivity in a model of granular matter”. Physical Review E 83, 031302, 2011. DOI: 10.1103/PhysRevE.83.031302 (see pp. 10, 114)
- [144] G. PÉREZ-ÁNGEL, L. E. SÁNCHEZ-DÍAZ, P. E. RAMÍREZ-GONZÁLEZ, R. JUÁREZ-MALDONADO, A. VIZCARRARENDÓN, and M. MEDINA-NOYOLA. “Equilibration of concentrated hard-sphere fluids”. Physical Review E 83, 060501, 2011. DOI: 10.1103/PhysRevE.83.060501 (see pp. 66, 76, 77, 86, 100, 110)
- [104] C. F. SCHRECK, C. S. O'HERN, and L. E. SILBERT. “Tuning jammed frictionless disk packings from isostatic to hyperstatic”. Physical Review E 84, 011305, 2011. DOI: 10.1103/PhysRevE.84.011305 (see p. 15)
- [113] C. B. O'DONOVAN and M. E. MÖBIUS. “Spatial correlations in polydisperse, frictionless, twodimensional packings”. Physical Review E 84, 020302, 2011. DOI: 10.1103/PhysRevE.84.020302 (see pp. 16, 25, 136)
- [59] L. BERTHIER, H. JACQUIN, and F. ZAMPONI. “Microscopic theory of the jamming transition of harmonic spheres”. Physical Review E 84, 051103, 2011. DOI: 10.1103/PhysRevE.84.051103 (see pp. 8, 136)
- [139] R. L. JACK and L. BERTHIER. “Random pinning in glassy spin models with plaquette interactions”. Physical Review E 85, 021120, 2012. DOI: 10.1103/PhysRevE.85.021120 (see pp. 49, 76)
- [70] S. S. ASHWIN, J. BLAWZDZIEWICZ, C. S. O'HERN, and M. D. SHATTUCK. “Calculations of the structure of basin volumes for mechanically stable packings”. Physical Review E 85, 061307, 2012. DOI: 10.1103/PhysRevE.85.061307 (see pp. 10, 19, 121, 124, 125, 136)
- [94] K. WANG, C. SONG, P. WANG, and H. A. MAKSE. “Edwards thermodynamics of the jamming transition for frictionless packings: Ergodicity test and role of angoricity and compactivity”. Physical Review E 86, 011305, 2012. DOI: 10.1103/PhysRevE.86.011305 (see pp. 15, 19, 20, 121)
- [134] M. C. VARGAS and G. PÉREZ-ÁNGEL. “Crystallization time scales for polydisperse hard-sphere fluids”. Physical Review E 87, 042313, 2013. DOI: 10.1103/PhysRevE.87.042313 (see pp. 39, 71)
- [162] A. SANTOS, S. B. YUSTE, M. LÓPEZ DE HARO, G. ODRIOZOLA, and V. OGARKO. “Simple effective rule to estimate the jamming packing fraction of polydisperse hard spheres”. Physical Review E 89, 040302, 2014. DOI: 10.1103/PhysRevE.89.040302 (see pp. 86, 96)
- [163] K. W. DESMOND and E. R. WEEKS. “Influence of particle size distribution on random close packing of spheres”. Physical Review E 90, 022204, 2014. DOI: 10.1103/PhysRevE.90.022204 (see pp. 86, 96)
- [209] F. PAILLUSSON. “Devising a protocol-related statistical mechanics framework for granular materials”. Physical Review E 91, 012204, 2015. DOI: 10.1103/PhysRevE.91.012204 (see p. 121)
- [16] M. JERKINS, M. SCHRÖTER, H. L. SWINNEY, T. J. SENDEN, M. SAADATFAR, and T. ASTE. “Onset of mechanical stability in random packings of frictional spheres”. Physical Review Letters 101, 018301, 2008. DOI: 10.1103/PhysRevLett.101.018301 (see pp. 2, 4, 53, 100, 122, 124, 145)
- [67] M. PICA CIAMARRA and A. CONIGLIO. “Random very loose packings”. Physical Review Letters 101, 128001, 2008. DOI: 10.1103/PhysRevLett.101.128001 (see pp. 10, 53, 70, 124)
- [73] C. BRISCOE, C. SONG, P. WANG, and H. A. MAKSE. “Entropy of jammed matter”. Physical Review Letters 101, 188001, 2008. DOI: 10.1103/PhysRevLett.101.188001 (see pp. 10, 14, 19, 121, 124, 126, 143, 146)
- [81] S. S. ASHWIN and R. K. BOWLES. “Complete jamming landscape of confined hard discs”. Physical Review Letters 102, 235701, 2009. DOI: 10.1103/PhysRevLett.102.235701 (see p. 14)
- [35] P. CHAUDHURI, L. BERTHIER, and S. SASTRY. “Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions”. Physical Review Letters 104, 165701, 2010. DOI: 10.1103/PhysRevLett.104.165701 (see pp. 3, 16, 18, 28, 39, 54, 66)
- [69] N. XU, D. FRENKEL, and A. J. LIU. “Direct Determination of the Size of Basins of Attraction of Jammed Solids”. Physical Review Letters 106, 245502, 2011. DOI: 10.1103/PhysRevLett.106. 245502 (see pp. 10, 19, 121, 124, 125)
- [32] E. SANZ, C. VALERIANI, E. ZACCARELLI, W. C. K. POON, P. N. PUSEY, and M. E. CATES. “Crystallization mechanism of hard sphere glasses”. Physical Review Letters 106, 215701, 2011. DOI: 10.1103/PhysRevLett.106.215701 (see pp. 3, 7, 66, 74, 92, 100, 110, 124)
- [207] R. BLUMENFELD, J. F. JORDAN, and S. F. EDWARDS. “Interdependence of the volume and stress ensembles and equipartition in statistical mechanics of granular systems”. Physical Review Letters 109, 238001, 2012. DOI: 10.1103/PhysRevLett.109.238001 (see pp. 121, 143)
- [66] J. G. PUCKETT and K. E. DANIELS. “Equilibrating temperaturelike variables in jammed granular subsystems”. Physical Review Letters 110, 058001, 2013. DOI: 10.1103/PhysRevLett.110.058001 (see pp. 10, 121, 143)
- [61] D. ASENJO, F. PAILLUSSON, and D. FRENKEL. “Numerical calculation of granular entropy”. Physical Review Letters 112, 098002, 2014. DOI: 10.1103/PhysRevLett.112.098002 (see pp. 9, 10, 86, 87, 97, 105, 114, 121, 125, 130, 134)
- [109] C. F. MOUKARZEL. “Isostatic phase transition and instability in stiff granular materials”. Physical Review Letters 81, 1634 - 1637, 1998. DOI: 10.1103/PhysRevLett.81.1634 (see p. 16)
- [107] H. A. MAKSE, D. L. JOHNSON, and L. M. SCHWARTZ. “Packing of compressible granular materials”. Physical Review Letters 84, 4160 - 4163, 2000. DOI: 10.1103/PhysRevLett.84.4160 (see pp. 16, 39)
- [101] C. S. O'HERN, S. A. LANGER, A. J. LIU, and S. R. NAGEL. “Random packings of frictionless particles”. Physical Review Letters 88, 075507, 2002. DOI: 10.1103/PhysRevLett.88.075507 (see pp. 15, 16, 18, 29, 39)
- [79] R. BLUMENFELD and S. F. EDWARDS. “Granular entropy: Explicit calculations for planar assemblies”. Physical Review Letters 90, 114303, 2003. DOI: 10.1103/PhysRevLett.90.114303 (see pp. 14, 121)
- [234] M. TARZIA, A. FIERRO, M. NICODEMI, M. PICA CIAMARRA, and A. CONIGLIO. “Size segregation in granular media induced by phase transition”. Physical Review Letters 95, 078001, 2005. DOI: 10.1103/PhysRevLett.95.078001 (see p. 143)
- [142] R. D. KAMIEN and A. J. LIU. “Why is random close packing reproducible?” Physical Review Letters 99, 155501, 2007. DOI: 10.1103/PhysRevLett.99.155501 (see pp. 54, 123, 132)
- [20] I. BIAZZO, F. CALTAGIRONE, G. PARISI, and F. ZAMPONI. “Theory of amorphous packings of binary mixtures of hard spheres”. Physical Review Letters 102, 195701, 2009. DOI: 10.1103/PhysRevLett. 102.195701 (see pp. 2, 16, 44, 92)
- [3] S. TORQUATO and F. H. STILLINGER. “Jammed hard-particle packings: From Kepler to Bernal and beyond”. Reviews of Modern Physics 82, 2633 - 2672, 2010. DOI: 10.1103/RevModPhys.82.2633 (see pp. 1, 3, 5, 6, 16, 27, 38, 39, 69, 86, 89, 100)
- [43] L. BERTHIER and G. BIROLI. “Theoretical perspective on the glass transition and amorphous materials”. Reviews of Modern Physics 83, 587 - 645, 2011. DOI: 10.1103/RevModPhys.83.587 (see pp. 4, 6, 7, 67)
- [12] C. S. O'HERN, L. E. SILBERT, A. J. LIU, and S. R. NAGEL. “Jamming at zero temperature and zero applied stress: The epitome of disorder”. Physical Review E 68, 011306, 2003. DOI: 10.1103/
- [177] C. R. MAURER, R. S. QI, and V. RAGHAVAN. “A linear time algorithm for computing exact Euclidean distance transforms of binary images in arbitrary dimensions”. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 265 - 270, 2003. DOI: 10.1109/TPAMI.2003.1177156 (see p. 105)
- [39] F. H. STILLINGER. “A topographic view of supercooled liquids and glass formation”. Science 267, 1935 - 1939, 1995. DOI: 10.1126/science.267.5206.1935 (see pp. 4, 6, 39, 41, 67, 69, 89, 90, 129)
- [175] M. MAITI, A. LAKSHMINARAYANAN, and S. SASTRY. “Characterization of void space in polydisperse sphere packings: Applications to hard-sphere packings and to protein structure analysis”. European Physical Journal E: Soft Matter and Biological Physics 36, 1 - 13, 2013. DOI: 10.1140/ epje/i2013-13005-4 (see pp. 104, 105, 107, 113)
- [26] K. LOCHMANN, A. ANIKEENKO, A. ELSNER, N. MEDVEDEV, and D. STOYAN. “Statistical verification of crystallization in hard sphere packings under densification”. European Physical Journal B: Condensed Matter and Complex Systems 53, 67 - 76, 2006. DOI: 10.1140/epjb/e2006-00348-9 (see pp. 3, 17, 27, 38, 49, 51, 54, 66, 74 - 77, 123)
- [23] T. ASTE and T. DI MATTEO. “Structural transitions in granular packs: statistical mechanics and statistical geometry investigations”. European Physical Journal B: Condensed Matter and Complex Systems 64, 511 - 517, 2008. DOI: 10.1140/epjb/e2008-00224-8 (see pp. 3, 14, 26, 29, 38, 49, 51, 54, 66, 74 - 76, 121, 143)
- [208] I. G. TEJADA. “Ensemble theory for slightly deformable granular matter”. European Physical Journal E: Soft Matter and Biological Physics 37, 1 - 8, 2014. DOI: 10.1140/epje/i2014-14081-6 (see p. 121)
- [178] R. FABBRI, L. D. F. COSTA, J. C. TORELLI, and O. M. BRUNO. “2D Euclidean distance transform algorithms: A comparative survey”. ACM Computing Surveys 40, 2:1 - 2:44, 2008. DOI: 10.1145/ 1322432.1322434 (see p. 105)
- [90] S. TORQUATO. “Statistical description of microstructures”. Annual Review of Materials Research 32, 77 - 111, 2002. DOI: 10.1146/annurev.matsci.32.110101.155324 (see pp. 14, 21, 101, 105, 135)
- [41] V. LUBCHENKO and P. G. WOLYNES. “Theory of structural glasses and supercooled liquids”. Annual Review of Physical Chemistry 58, 235 - 266, 2007. DOI: 10.1146/annurev.physchem.58.032806. 104653 (see pp. 4, 6)
- [47] D. BI, S. HENKES, K. E. DANIELS, and B. CHAKRABORTY. “The statistical physics of athermal materials”. Annual Review of Condensed Matter Physics 6, 63 - 83, 2015. DOI: 10.1146/annurevconmatphys-031214-014336 (see pp. 4, 9, 10, 114, 121, 130, 134)
- [25] M. BARGIEŁ and E. M. TORY. “Packing fraction and measures of disorder of ultradense irregular packings of equal spheres. II. Transition from dense random packing”. Advanced Powder Technology 12, 533 - 557, 2001. DOI: 10.1163/15685520152756660 (see pp. 3, 14, 17, 29, 38, 49, 51, 54, 66, 74 - 77, 123)
- [195] M. NICODEMI, A. F., and A. CONIGLIO. “Segregation in hard-sphere mixtures under gravity. An extension of Edwards approach with two thermodynamical parameters”. EPL (Europhysics Letters) 60, 684 - 690, 2002. DOI: 10.1209/epl/i2002-00363-0 (see pp. 121, 143) [204] F. PAILLUSSON and D. FRENKEL. “Probing ergodicity in granular matter”. Physical Review Letters 109, 208001, 2012. DOI: 10.1103/PhysRevLett.109.208001 (see p. 121)
- [6] S. KHIREVICH, A. HÖLTZEL, and U. TALLAREK. “Validation of pore-scale simulations of hydrodynamic dispersion in random sphere packings”. Communications in Computational Physics 13, 801 - 822, 2013. DOI: 10.4208/cicp.361011.260112s (see pp. 1, 27, 38, 55, 66, 100)
- [7] U. M. SCHEVEN, S. KHIREVICH, A. DANEYKO, and U. TALLAREK. “Longitudinal and transverse dispersion in flow through random packings of spheres: A quantitative comparison of experiments, simulations, and models”. Physical Review E 89, 053023, 2014. DOI: 10 . 1103 / PhysRevE . 89 . 053023 (see pp. 1, 100)
- [115] M. ABRAMOWITZ and I. A. STEGUN. Handbook of mathematical functions: With formulas, graphs, and mathematical tables. New York: Dover Publications, 1965. (see p. 23)
- [4] T. C. HALES. “A proof of the Kepler conjecture”. Annals of Mathematics 162, 1065 - 1185, 2005. (see p. 1)
- [193] E. R. NOWAK, J. B. KNIGHT, E. BEN-NAIM, H. M. JAEGER, and S. R. NAGEL. “Density fluctuations in vibrated granular materials”. Physical Review E 57, 1971 - 1982, 1998. (see pp. 121, 143)
- [17] J. C. GIDDINGS. Dynamics of chromatography: Principles and theory. New York: Marcel Dekker, 1965. (see p. 2)
- [213] M. VAN HECKE. “Jamming of soft particles: geometry, mechanics, scaling and isostaticity”. Journal of Physics: Condensed Matter 22, 033101, 2010. DOI: 10.1088/0953- 8984/22/3/033101 (see p. 123)
- [58] D. FRENKEL. “Order through disorder: Entropy-driven phase transitions” in: Complex Fluids ed. by LUIS GARRIDO. Springer Berlin Heidelberg, 1993. (see p. 7)
- [99] A. BEZRUKOV, M. BARGIEŁ, and D. STOYAN. “Statistical analysis of simulated random packings of spheres”. Particle & Particle Systems Characterization 19, 111 - 118, 2002. DOI: 10.1002/1521- 4117(200205)19:2<111::AID-PPSC111>3.0.CO;2-M (see pp. 15, 17, 18, 40, 70, 91, 109)