Publikationsserver der Universitätsbibliothek Marburg

Titel:Functionalization of inorganic semiconductors by advanced nanostructures
Autor:Rosemann, Nils
Weitere Beteiligte: Chatterjee, S. (PD Dr.)
Veröffentlicht:2016
URI:https://archiv.ub.uni-marburg.de/diss/z2016/0483
DOI: https://doi.org/10.17192/z2016.0483
URN: urn:nbn:de:hebis:04-z2016-04836
DDC:530 Physik
Titel (trans.):Funktionalisierung von inorganischen Halbleitern durch neuartige Nanostrukturen
Publikationsdatum:2016-08-24
Lizenz:https://creativecommons.org/licenses/by-nc-nd/4.0/

Dokument

Schlagwörter:
Nichtlineare Optik, Cluster molecules, Frequency conversion, Nanostructures, Frequenzumsetzung, Optik, Laserspektroskopie, Cluster, Nonlinear optics

Summary:
Different concepts for the functionalization of inorganic semiconductors are investigated. These include functionalization by gallium nitride based nanowires as well as functionalization by organotetrel cluster-molecules. The nanowires are investigated by time-resolved photoluminescence and external quantum efficiency measurements. The cluster-molecules are investigated in regards to their stability and nonlinear optical properties. Ultimately a cluster-molecule with an ultra-low threshold is found that provides supercontinuum generation using a continous-wave laser diode. For a better understaning of the white-light generating process, nummerical simulations based on a semi-classical model are performed.

Bibliographie / References

  1. [67] George D Purvis III and Rodney J Bartlett. A full coupled-cluster singles and doubles model: The inclusion of disconnected triples. The Journal of Chemical Physics, 76(4):1910-1918, 1982.
  2. [39] R. Eiermann, G. M. Parkinson, H. Baessler, and J. M. Thomas. Amorphous organic molecular solids. Vapor-deposited tetracene. The Journal of Physical Chemistry, 86(3):313-315, 1982.
  3. [37] A. Damascelli, Z. Hussain, and Z.-X. Shen. Angle-resolved photoemission studies of the cuprate superconductors. Reviews of Modern Physics, 75:473- 541, 2003.
  4. [55] Edward Condon. A Theory of Intensity Distribution in Band Systems. Physical Review, 28(6):1182-1201, 1926.
  5. [36] Marvin L. Cohen and T. K. Bergstresser. Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures. Phys. Rev., 141:789-796, 1966.
  6. [95] A Beer. Bestimmung der absorption des rothen lichts in farbigen flüssigkeiten. Ann. Phys. Chem., 86:78-88, 1852.
  7. [91] D. Bimberg. Calorimetric absorption spectroscopy of nonradiative recombination processes in GaP. Applied Physics Letters, 38(10):803, 1981.
  8. [100] Florian Furtmayr, Jörg Teubert, Pascal Becker, Sonia Conesa-Boj, Joan Ramon Morante, Alexey Chernikov, Sören Schäfer, Sangam Chatterjee, Jordi Arbiol, and Martin Eickhoff. Carrier confinement in gan/al x ga 1- x n nanowire heterostructures (0< x 1). Physical Review B, 84(20):205303, 2011.
  9. [79] Torsten Meier, Peter Thomas, and Stephan W. Koch. Coherent Semiconductor Optics - From Basic Concepts to Nanostructure Applications. Springer Science and Business Media, Berlin, Heidelberg, 2007.
  10. [108] Christian Hauswald. Dynamics of free and bound excitons in GaN nanowires: Origin of the nonradiative recombination channel. Phd thesis, HumboldtUniversität zu Berlin, 2015.
  11. [80] TY Fan, GJ Dixon, and Robert L Byer. Efficient gaalas diode-laser-pumped operation of nd: Ylf at 1.047 mm with intracavity doubling to 523.6 nm. Optics letters, 11(4):204-206, 1986.
  12. [58] William Barford. Electronic and optical properties of conjugated polymers. Number 159. Oxford University Press, 2013.
  13. [43] Walter A Harrison. Electronic structure and the properties of solids: the physics of the chemical bond. Courier Corporation, 2012.
  14. [32] Richard M. Martin. Electronic Structure: Basic Theory and Practical Methods (Vol 1). Cambridge University Press, 2004.
  15. [110] Spilios Riyopoulos. Electrostatically shielded quantum confined stark effect inside polar nanostructures. Nanoscale research letters, 4(9):993-1003, 2009.
  16. [104] John B Schlager, Matt D Brubaker, Kris A Bertness, and Norman A Sanford. Estimates of photoluminescence efficiencies in gan nanowires at high injection levels from steady-state photoluminescence measurements. physica status solidi (c), 11(3-4):810-812, 2014.
  17. [109] Julien Renard, Rudeesun Songmuang, Gabriel Tourbot, Catherine Bougerol, Bruno Daudin, and Bruno Gayral. Evidence for quantum-confined stark effect in gan/aln quantum dots in nanowires. Physical Review B, 80(12):121305, 2009.
  18. [40] a.R. Brown, C.P. Jarrett, D.M. de Leeuw, and M. Matters. Field-effect transistors made from solution-processed organic semiconductors. Synthetic Metals, 88(1):37-55, 1997.
  19. [111] Qiang Zhang, Cai-Feng Wang, Lu-Ting Ling, and Su Chen. Fluorescent nanomaterial-derived white light-emitting diodes: what's going on. Journal of Materials Chemistry C, 2(22):4358-4373, 2014.
  20. [82] TILMAN BUTZ. Fouriertransformation für Fußgänger. Vieweg+Teubner Verlag, Wiesbaden, 7th edition edition, 2011.
  21. [52] Tomasz Adam Wesolowski and Arieh Warshel. Frozen density functional approach for ab initio calculations of solvated molecules. The Journal of Physical Chemistry, 97(30):8050-8053, 1993.
  22. [124] G Domingo, RS Itoga, and CR Kannewurf. Fundamental optical absorption in sn s 2 and sn se 2. Physical Review, 143(2):536, 1966.
  23. [54] PA Franken, AE Hill, CW el Peters, and G Weinreich. Generation of optical harmonics. Physical Review Letters, 7(4):118, 1961.
  24. [98] Masaki Yoshizawa, Akihiko Kikuchi, Masashi Mori, Nobuhiko Fujita, and Katsumi Kishino. Growth of self-organized gan nanostructures on al2o3 (0001) by rf-radical source molecular beam epitaxy. Japanese journal of applied physics, 36(4B):L459, 1997.
  25. [50] G. Gauglitz and D.S. Moore. Handbook of Spectroscopy, 4 Volume Set. Wiley, 2014.
  26. [116] MC Schlamp, Xiaogang Peng, and AP Alivisatos. Improved efficiencies in light emitting diodes made with cdse (cds) core/shell type nanocrystals and a semiconducting polymer. Journal of Applied Physics, 82(11):5837-5842, 1997.
  27. [49] P. Larkin. Infrared and Raman Spectroscopy; Principles and Spectral Interpretation. Elsevier Science, 2011.
  28. [57] Ingolf V Hertel and C-P Schulz. Laser, licht und kohärenz. In Atome, Moleküle und optische Physik 2, pages 137-204. Springer, 2010.
  29. [66] Jirˇí Cˇ ížek. On the correlation problem in atomic and molecular systems. calculation of wavefunction components in ursell-type expansion using quantumfield theoretical methods. The Journal of Chemical Physics, 45(11):4256-4266, 1966.
  30. [122] JI Jang, S Park, CM Harrison, DJ Clark, CD Morris, I Chung, and MG Kanatzidis. K 4 gep 4 se 12: a case for phase-change nonlinear optical chalcogenide. Optics letters, 38(8):1316-1318, 2013.
  31. [123] Zohreh Hassanzadeh Fard, Christian Müller, Thomas Harmening, Rainer Pöttgen, and Stefanie Dehnen. Knüpfung von Thiostannat-Sn-Sn-Bindungen in Lösung: In-situ-Bildung des gemischtvalenten funktionalisierten Komplexes [{(RSn IV ) 2 (m-S) 2 } 3 Sn III 2 S 6 ]. Angewandte Chemie, 121(24):4507- 4511, 2009.
  32. [114] VL Colvin, MC Schlamp, and AP Alivisatos. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. SPIE milestone series, 180:396-398, 2005.
  33. [63] M. Kira and S. W. Koch. Many-body correlations and excitonic effects in semiconductor spectroscopy. Progress in Quantum Electronics, 30(5):155- 296, 2006.
  34. [94] R. Westphäling, P Ullrich, J Hoffmann, H. Kalt, C. Klingshirn, K. Ohkawa, and D. Hommel. Measurements of the absolute external luminescence quantum efficiency in ZnSe/ZnMgSSe multiple quantum wells as a function of temperature. Journal of Applied Physics, 84(12):6871, 1998.
  35. [62] W. Chow, M. Kira, and S. Koch. Microscopic theory of optical nonlinearities and spontaneous emission lifetime in group-III nitride quantum wells. Physical Review B, 60(3):1947-1952, 1999.
  36. [96] E Calleja, MA Sánchez-Garcıa, F Calle, FB Naranjo, E Munoz, U Jahn, K Ploog, J Sanchez, JM Calleja, K Saarinen, et al. Molecular beam epitaxy growth and doping of iii-nitrides on si (111): layer morphology and doping efficiency. Materials Science and Engineering: B, 82(1):2-8, 2001.
  37. [33] J. M. Luttinger and W. Kohn. Motion of electrons and holes in perturbed periodic fields. Phys. Rev., 97:869-883, 1955.
  38. [60] D. S. Chemla. Nonlinear optical properties of organic molecules and crystals. Academic Press, 1987.
  39. [75] D.L. Mills. Nonlinear optics - basic concepts. Springer, Berlin, Heidelberg, 2nd, enl. ed. 1998 edition, 1998.
  40. [81] N. Bloembergen. Nonlinear Optics - Lecture Note and Reprint Volume. Benjamin, New York, 1965.
  41. [78] D. C. Hanna. Nonlinear Optics of Free Atoms and Molecules -. Springer-Verlag, Berlin Heidelberg New York, 1979.
  42. [35] James R. Chelikowsky and Marvin L. Cohen. Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys. Rev. B, 14:556-582, 1976.
  43. [56] Edward U. Condon. Nuclear motions associated with electron transitions in diatomic molecules. Physical Review, 32(6):858-872, 1928.
  44. [103] Florian Furtmayr, Martin Vielemeyer, Martin Stutzmann, Andreas Laufer, Bruno K Meyer, and Martin Eickhoff. Optical properties of si-and mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 104(7):074309, 2008.
  45. [53] O Anatole Von Lilienfeld, Ivano Tavernelli, Ursula Rothlisberger, and Daniel Sebastiani. Optimization of effective atom centered potentials for london dispersion forces in density functional theory. Physical review letters, 93(15):153004, 2004.
  46. [45] Hideo Akamatu, Hiroo Inokuchi, and Yoshio Matsunaga. Organic semiconductors with high conductivity. i. complexes between polycyclic aromatic hydrocarbons and halogens. Bulletin of the Chemical Society of Japan, 29(2):213-218, 1956.
  47. [105] Christian Hauswald, Pierre Corfdir, Johannes K Zettler, Vladimir M Kaganer, Karl K Sabelfeld, Sergio Fernández-Garrido, Timur Flissikowski, Vincent Consonni, Tobias Gotschke, Holger T Grahn, et al. Origin of the nonradiative decay of bound excitons in gan nanowires. Physical Review B, 90(16):165304, 2014.
  48. [31] Peter YU and Manuel Cardona. Fundamentals of Semiconductors: Physics and Materials Properties (Graduate Texts in Physics). Springer, 2010.
  49. [38] Ioffe Institute. Physical properties of semiconductors @www.ioffe.ru/SVA/NMS, 2016.
  50. [102] A. Chernikov. Private communication.
  51. [101] A Chernikov, S Schäfer, M Koch, S Chatterjee, B Laumer, and M Eickhoff. Probing carrier populations in zno quantum wells by screening of the internal electric fields. Physical Review B, 87(3):035309, 2013.
  52. [64] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloe. Quantenmechanik: Teil 1 : 2 Durchgesehene Und Verbesserte Auflage (German Edition). Walter De Gruyter Inc, 1999.
  53. [112] Warren C. W. Chan and Shuming Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281(5385):2016-2018, 1998.
  54. [115] István Robel, Vaidyanathan Subramanian, Masaru Kuno, and Prashant V Kamat. Quantum dot solar cells. harvesting light energy with cdse nanocrystals molecularly linked to mesoscopic tio2 films. Journal of the American Chemical Society, 128(7):2385-2393, 2006.
  55. [65] J. A. Wheeler. Quantum Theory and Measurement (Princeton Legacy Library). Princeton University Press, 1983.
  56. [46] W Helfrich and WG Schneider. Recombination radiation in anthracene crystals. Physical Review Letters, 14(7):229, 1965.
  57. [51] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects. Physical review, 140(4A):A1133, 1965.
  58. [59] S W Koch, M Kira, G Khitrova, and H M Gibbs. Semiconductor excitons in new light. Nature materials, 5(7):523-531, 2006.
  59. [113] Marcel Bruchez, Mario Moronne, Peter Gin, Shimon Weiss, and A. Paul Alivisatos. Semiconductor nanocrystals as fluorescent biological labels. Science, 281(5385):2013-2016, 1998.
  60. [61] Claus F. Klingshirn. Semiconductor Optics (Graduate Texts in Physics). Springer, 2012.
  61. [93] Sphere Optics. General Purpose Integrating Sphere Instruction Maunal, 2010.
  62. [107] John B Schlager, Kris A Bertness, Paul T Blanchard, Lawrence H Robins, Alexana Roshko, and Norman A Sanford. Steady-state and time-resolved photoluminescence from relaxed and strained gan nanowires grown by catalystfree molecular-beam epitaxy. Journal of applied physics, 103(12):124309, 2008.
  63. [99] Hung-Ying Chen, Hon-Way Lin, Chang-Hong Shen, and Shangjr Gwo. Structure and photoluminescence properties of epitaxially oriented gan nanorods grown on si (111) by plasma-assisted molecular-beam epitaxy. Applied physics letters, 89(24):243105-243105, 2006.
  64. [85] John M. Dudley, Goëry Genty, and Stéphane Coen. Supercontinuum generation in photonic crystal fiber. Reviews of Modern Physics, 78(4):1135-1184, 2006.
  65. [117] Pingyun Feng, Xianhui Bu, and Nanfeng Zheng. The interface chemistry between chalcogenide clusters and open framework chalcogenides. Accounts of chemical research, 38(4):293-303, 2005.
  66. [41] M. C. J. M. Vissenberg and M. Matters. Theory of the field-effect mobility in amorphous organic transistors. Physical Review B, 57(20):13, 1998.
  67. [83] Robert R. Alfano and R. R. Alfano. The Supercontinuum laser source -. Springer-Verlag, Berlin Heidelberg New York, 1989.
  68. [125] Zohreh Hassanzadeh Fard, Christian Müller, Thomas Harmening, Rainer Pöttgen, and Stefanie Dehnen. Thiostannate tin-tin bond formation in solution: In situ generation of the mixed-valent, functionalized complex [f(RSnIV) 2 (mS) 2g 3sniii2s6]. Angewandte Chemie International Edition, 48(24):4441-4444, 2009.
  69. [34] D. J. Chadi and M. L. Cohen. Tight-binding calculations of the valence bands of diamond and zincblende crystals. physica status solidi (b), 68(1):405-419, 1975.
  70. [106] A Gorgis, T Flissikowski, O Brandt, C Chèze, L Geelhaar, H Riechert, and HT Grahn. Time-resolved photoluminescence spectroscopy of individual gan nanowires. Physical Review B, 86(4):041302, 2012.
  71. [86] B a Cumberland, J C Travers, S V Popov, and J R Taylor. Toward visible cwpumped supercontinua. Optics Letters, 33(18):2122, 2008.
  72. [48] Prof. dr. Karl Leo. What are organic semiconductors, April 2016.
  73. [84] Stéphane Coen, Alvin Hing Lun Chau, Rainer Leonhardt, John D Harvey, Jonathan C Knight, William J Wadsworth, and Philip St J Russell. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Optics Letters, 26(17):1356, 2001.
  74. [97] L Cerutti, J Ristic, S Fernández-Garrido, E Calleja, A Trampert, KH Ploog, S Lazic, and JM Calleja. Wurtzite gan nanocolumns grown on si (001) by molecular beam epitaxy. Applied physics letters, 88(21):213114-213114, 2006.
  75. [126] Zhiliang You and Stefanie Dehnen. Directed Formation of a FerrocenylDecorated Organotin Sulfide Complex and Its Controlled Degradation. Inorganic Chemistry, 52(21):12332-12334, 2013.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten