Summary:
The capability of understanding and processing numerical information is a critical skill that allows humans to compare, calculate, judge and remember numbers and numerosities. Without this capability, countless processes in everyday life would be very hard to accomplish. This ranges from simple actions like playing dice to the invention of modern techniques, such as personal computers and satellite-based navigation. Hence, it is important to understand the neural processes underlying the (human) perception of numbers and numerosities. As a contribution to this very complex research field I performed three studies using psychophysical methods and electroencephalography (EEG) with the aim to draw general conclusions on human number perception and the processing of numerical information. In the first two studies, I investigated the effect of spatial numerical association of response codes (SNARC). This effect is commonly seen as evidence for the concept of a mental number line (MNL), which is a metaphor for the fact, that the human brain organizes numbers on a mentally conceived line with small numbers on the left and large numbers on the right.
In my first study I showed the effector dependence of the SNARC effect, by measuring the SNARC effect for three different effectors: bimanual finger responses, arm pointing responses and saccadic responses. In my second study, I showed that the concept of the mental number line can be extended to a frontoparallel mental number plane, where small numbers are represented left and down and large numbers are represented right and up. I achieved this result by investigating the SNARC effect for cardinal axes (horizontal and vertical) and for diagonal axes in one and the same subject. This approach allowed me to conclude that the strength of the SNARC effect on the diagonal axes can be expressed as a linear combination of the strength of the SNARC effect along the two cardinal axes.
In this second study I measured the SNARC effect also regarding two sensory modalities (visual presented Arabic digits and spoken number words). The comparison of the SNARC effect elicited by these two modalities revealed that the strength of the SNARC effect depended on the modality of number presentation. Together with the results of the effector dependency of the SNARC effect from my first study this led me to propose the existence of a distributed “SNARC network” in the human brain. Within the framework of this proposal the SNARC effect is elicited in a central number stage (CNS) as a consequence of the interaction between numbers and space in the human brain (e.g. as explicated by the MNL). But in addition, the SNARC effect is further modulated by early, modality dependent processing stages and late, effector dependent processing stages. I hypothesize that these stages modulate the SNARC effect, but not the relationship between numbers and space per se.
My first two studies, explored the SNARC effect, based on abstract numbers represented in the, so-called, approximate number system (ANS). In addition to the number processing in the ANS, it is known that the human brain is capable of perceiving very small magnitudes (up to four) immediately, a phenomenon called subitizing. Previous studies showed that this perception, although very fast, might be influenced by attentional load (Railo et al., 2008; Olivers & Watson, 2008; Anobile et al., 2012). In my third study, I measured the neural basis of the processing of numerical information non-invasively by means of EEG and used the effect of visual mismatch negativity to demonstrate the pre-attentive processing of quantities in the subitizing range. In this experiment, I rapidly pre-sented stimuli, consisting of one, two or three circular patches. To ensure that numerosity was the relevant factor, patches were varied for low-level visual features (luminance vs. individual patch size). While participants were engaged in a difficult visual detection task, changes of the number of patches (standard vs. deviant) were processed pre-attentively. The results of my study provide evidence for the idea that numerosity in this small (subitizing) range is processed pre-attentively.
Taken together, I showed that the mental number line could be extended to a frontoparallel mental number plane and eventually even to a three-dimensional mental number space. I found evidence for the dependence of the SNARC effect on sensory modalities as well as on response effectors, suggesting the existence of a distributed SNARC-brain-network. Finally, I revealed some evidence that number processing of small magnitudes in the subitizing range might be pre-attentive.
Bibliographie / References
- Menon, V., Rivera, S. M., White, C. D., Glover, G. H., & Reiss, A. L. (2000). Dissociating Prefrontal and Parietal Cortex Activation during Arithmetic Processing. NeuroImage, 12(4), 357-365. doi:10.1006/nimg.2000.0613
- Pinel, P., Dehaene, S., Rivière, D., & LeBihan, D. (2001). Modulation of Parietal Activation by Semantic Distance in a Number Comparison Task. NeuroImage, 14(5), 1013- 1026. doi:10.1006/nimg.2001.0913
- Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are Subitizing and Counting Implemented as Separate or Functionally Overlapping Processes? NeuroImage, 15(2), 435-446. doi:10.1006/nimg.2001.0980
- Konen, C. S., Kleiser, R., Bremmer, F., & Seitz, R. J. (2007). Different cortical activations during visuospatial attention and the intention to perform a saccade. Experimental Brain Research, 182(3), 333-341. doi:10.1007/s00221-007-0995-z
- Klingenhoefer, S., & Bremmer, F. (2009). Perisaccadic localization of auditory stimuli. Experimental Brain Research, 198(2-3), 411-423. doi:10.1007/s00221-009-1869-3
- Land, M. F. (1999). Motion and vision: why animals move their eyes. Journal of Comparative Physiology A, 185(4), 341-352. doi:10.1007/s003590050393
- Huber, S., Klein, E., Graf, M., Nuerk, H.-C., Moeller, K., & Willmes, K. (2015). Embodied markedness of parity? Examining handedness effects on parity judgments. Psychological Research, 79(6), 963-977. doi:10.1007/s00426-014-0626-9
- Herrmann, C. S., Rach, S., Vosskuhl, J., & Strüber, D. (2014). Time-Frequency Analysis of Event-Related Potentials: A Brief Tutorial. Brain Topography, 27(4), 438-450. doi:10.1007/s10548-013-0327-5
- Odom, J. V., Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., Tormene, A. P., & Vaegan. (2010). ISCEV standard for clinical visual evoked potentials (2009 update). Documenta Ophthalmologica, 120(1), 111-119. doi:10.1007/s10633-009-9195-4
- Khodanovich, M. Y., Esipenko, E. A., Svetlik, M. V., & Krutenkova, E. P. (2010). A Visual Analog of Mismatch Negativity When Stimuli Differ in Duration. Neuroscience and Behavioral Physiology, 40(6), 653-661. doi:10.1007/s11055-010-9308-2
- Svenson, O. (1975). Analysis of time required by children for simple additions. Acta Psychologica, 39, 289-302. doi:10.1016/0001-6918(75)90013-x
- Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313-329. doi:10.1016/0001-6918(78)90006-9
- Jasper, H. H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroencephalography and Clinical Neurophysiology Supplement, 10(2), 370-375. doi:10.1016/0013-4694(58)90053-1
- Mishkin, M., & Ungerleider, L. G. (1982). Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural Brain Research, 6(1), 57-77. doi:10.1016/0166-4328(82)90081-X
- Plaisier, M. A., Bergmann Tiest, W. M., & Kappers, A. M. L. (2009). One, two, three, many - Subitizing in active touch. Acta Psychologica, 131(2), 163-170. doi:10.1016/j.actpsy.2009.04.003
- Kimura, M., Widmann, A., & Schröger, E. (2010c). Human visual system automatically represents large-scale sequential regularities. Brain Research, 1317, 165-179. doi:10.1016/j.brainres.2009.12.076
- Ruusuvirta, T., & Astikainen, P. (2016). Preattentive and attentive responses to changes in small numerosities of tones in adult humans. Brain Research, 1634, 68-74. doi:10.1016/j.brainres.2015.12.047
- Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544-2590. doi:10.1016/j.clinph.2007.04.026
- Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24(1), 48-56. doi:10.1016/j.cogbrainres.2004.12.005
- Hung, Y., Hung, D. L., Tzeng, O. J.-L., & Wu, D. H. (2008). Flexible spatial mapping of different notations of numbers in Chinese readers. Cognition, 106(3), 1441-1450. doi:10.1016/j.cognition.2007.04.017
- Railo, H., Koivisto, M., Revonsuo, A., & Hannula, M. M. (2008). The role of attention in subitizing. Cognition, 107(1), 82-104. doi:10.1016/j.cognition.2007.08.004
- Jarick, M., Dixon, M. J., Maxwell, E. C., Nicholls, M. E. R., & Smilek, D. (2009). The ups and downs (and lefts and rights) of synaesthetic number forms: Validation from spatial cueing and SNARC-type tasks. Cortex, 45(10), 1190-1199. doi:10.1016/j.cortex.2009.04.015
- Plodowski, A., Swainson, R., Jackson, G. M., Rorden, C., & Jackson, S. R. (2003). Mental Representation of Number in Different Numerical Forms. Current Biology, 13(23), 2045-2050. doi:10.1016/j.cub.2003.11.023
- Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain's internal random generator. Current Biology, 18(2), R60-R62. doi:10.1016/j.cub.2007.11.015
- Loetscher, T., Bockisch, C. J., Nicholls, M. E. R., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20(6), R264-R265. doi:10.1016/j.cub.2010.01.015
- Kimura, M. (2012). Visual mismatch negativity and unintentional temporal-context-based prediction in vision. International Journal of Psychophysiology, 83(2), 144-155. doi:10.1016/j.ijpsycho.2011.11.010
- Qian, X., Liu, Y., Xiao, B., Gao, L., Li, S., Dang, L., … Zhao, L. (2014). The visual mismatch negativity (vMMN): Toward the optimal paradigm. International Journal of Psychophysiology, 93(3), 311-315. doi:10.1016/j.ijpsycho.2014.06.004
- Hoffmann, D., Hornung, C., Martin, R., & Schiltz, C. (2013). Developing number-space associations: SNARC effects using a color discrimination task in 5-year-olds. Journal of Experimental Child Psychology, 116(4), 775-791. doi:10.1016/j.jecp.2013.07.013
- Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015). Mental number space in three dimensions. Neuroscience and Biobehavioral Reviews, 57, 209-219. doi:10.1016/j.neubiorev.2015.09.005
- Pazo-Alvarez, P., Amenedo, E., Lorenzo-López, L., & Cadaveira, F. (2004). Effects of stimulus location on automatic detection of changes in motion direction in the human brain. Neuroscience Letters, 371(2-3), 111-116. doi:10.1016/j.neulet.2004.08.073
- Kimura, M., Ohira, H., & Schröger, E. (2010a). Localizing sensory and cognitive systems for pre-attentive visual deviance detection: An sLORETA analysis of the data of Kimura et al. (2009). Neuroscience Letters, 485(3), 198-203. doi:10.1016/j.neulet.2010.09.011
- Qiu, X., Yang, X., Qiao, Z., Wang, L., Ning, N., Shi, J., … Yang, Y. (2011). Impairment in processing visual information at the pre-attentive stage in patients with a major depressive disorder: A visual mismatch negativity study. Neuroscience Letters, 491(1), 53-57. doi:10.1016/j.neulet.2011.01.006
- Konen, C. S., Kleiser, R., Wittsack, H.-J., Bremmer, F., & Seitz, R. J. (2004). The encoding of saccadic eye movements within human posterior parietal cortex. NeuroImage, 22(1), 304-314. doi:10.1016/j.neuroimage.2003.12.039
- Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547-555. doi:10.1016/j.neuron.2004.10.014
- Wallisch, P., & Movshon, J. A. (2008). Structure and Function Come Unglued in the Visual Cortex. Neuron, 60(2), 195-197. doi:10.1016/j.neuron.2008.10.008
- Kaminiarz, A., Krekelberg, B., & Bremmer, F. (2007). Localization of visual targets during optokinetic eye movements. Vision Research, 47(6), 869-878. doi:10.1016/j.visres.2006.10.015
- Levi, D. M. (2008). Crowding - an essential bottleneck for object recognition: a minireview. Vision Research, 48(5), 635-654. doi:10.1016/j.visres.2007.12.009
- Knöll, J., Morrone, M. C., & Bremmer, F. (2013). Spatio-temporal topography of saccadic overestimation of time. Vision Research, 83, 56-65. doi:10.1016/j.visres.2013.02.013
- Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80(1-2), 127-158. doi:10.1016/S0010-0277(00)00156-6
- Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82(1), B25-B33. doi:10.1016/s0010-0277(01)00142-1
- Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1-B11. doi:10.1016/S0010-0277(99)00066-9
- Wood, G., Nuerk, H.-C., & Willmes, K. (2006a). Crossed hands and the SNARC effect: a failure to replicate Dehaene, Bossini and Giraux (1993). Cortex, 42(8), 1069-1079. doi:10.1016/s0010-9452(08)70219-3
- Wood, G., Nuerk, H.-C., & Willmes, K. (2006b). Variability of the SNARC effect: Systematic interindividual differences or just random error? Cortex, 42, 1119-1123. doi:10.1016/s0010-9452(08)70223-5
- Snyder, L. H., Batista, A. P., & Andersen, R. A. (2000). Intention-related activity in the posterior parietal cortex: a review. Vision Research, 40(10-12), 1433-1441. doi:10.1016/S0042-6989(00)00052-3
- Lappe, M., & Hoffmann, K.-P. (2000). Optic flow and eye movements. International Review of Neurobiology, 44, 29-47. doi:10.1016/s0074-7742(08)60736-9
- Ilg, U. J. (1997). Slow eye movements. Progress in Neurobiology, 53(3), 293-329. doi:10.1016/S0301-0082(97)00039-7
- Wojciulik, E., & Kanwisher, N. (1999). The Generality of Parietal Involvement in Visual Attention. Neuron, 23(4), 747-764. doi:10.1016/S0896-6273(01)80033-7
- Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe. Neuron, 33(3), 475-487. doi:10.1016/s0896-6273(02)00575-5
- Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3(4), 151-162. doi:10.1016/S1364-6613(99)01299-1
- Jacobsen, T., & Schröger, E. (2003). Measuring duration mismatch negativity. Clinical Neurophysiology, 114(6), 1133-1143. doi:10.1016/S1388-2457(03)00043-9
- Sussman, E. S. (2007). A New View on the MMN and Attention Debate: The Role of Context in Processing Auditory Events. Journal of Psychophysiology, 21(3-4), 164- 175. doi:10.1027/0269-8803.21.34.164
- Nuerk, H.-C., Wood, G., & Willmes, K. (2005). The Universal SNARC Effect. Experimental Psychology, 52(3), 187-194. doi:10.1027/1618-3169.52.3.187
- Schwarz, W., & Müller, D. (2006). Spatial Associations in Number-Related Tasks: A Comparison of Manual and Pedal Responses. Experimental Psychology, 53(1), 4-15. doi:10.1027/1618-3169.53.1.4
- Rayner, K. (1998). Eye movements in Reading and Information Processing: 20 Years of Research. Psychological Bulletin, 124(3), 372-422. doi:10.1037/0033-2909.124.3.372
- Proctor, R. W., & Cho, Y. S. (2006). Polarity Correspondence: A General Principle for Performance of Speeded Binary Classification Tasks. Psychological Bulletin, 132(3), 416-442. doi:10.1037/0033-2909.132.3.416
- Trick, L. M., & Pylyshyn, Z. W. (1994). Why Are Small and Large Numbers Enumerated Differently? A Limited-Capacity Preattentive Stage in Vision. Psychological Review, 101(1), 80-102. doi:10.1037/0033-295X.101.1.80
- Trick, L. M., & Pylyshyn, Z. W. (1993). What Enumeration Studies Can Show Us About Spatial Attention: Evidence for Limited Capacity Preattentive Processing. Journal of Experimental Psychology: Human Perception and Performance, 19(2), 331-351. doi:10.1037/0096-1523.19.2.331
- Shaki, S., & Fischer, M. H. (2012). Multiple Spatial Mappings in Numerical Cognition. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 804-809. doi:10.1037/a0027562
- Moyer, R. S., & Landauer, T. K. (1967). Time required for Judgements of Numerical Inequality. Nature, 215(5109), 1519-1520. doi:10.1038/2151519a0
- Lappe, M., Awater, H., & Krekelberg, B. (2000). Postsaccadic visual references generate presaccadic compression of space. Nature, 403(6772), 892-895. doi:10.1038/35002588
- Ross, J., Morrone, M. C., & Burr, D. C. (1997). Compression of visual space before saccades. Nature, 386(6625), 598-601. doi:10.1038/386598a0
- Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440(7080), 91-95. doi:10.1038/nature04262
- Morrone, M. C., Ross, J., & Burr, D. C. (1997). Apparent Position of Visual Targets during Real and Simulated Saccadic Eye Movements. The Journal of Neuroscience, 17(20), 7941-7953. doi:10.1038/nn1488
- Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews. Neuroscience, 5(3), 229-240. doi:10.1038/nrn1348
- Königs, K., Knöll, J., & Bremmer, F. (2007). Localisation of auditory targets during optokinetic nystagmus. Perception, 36(10), 1507-1512. doi:10.1068/p5849
- Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences of the United States of America, 101(19), 7457-7462. doi:10.1073/pnas.0402239101
- Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., Seelig, D., Aschenbrenner-Scheibe, R., & Kahana, M. J. (2003). Reset of human neocortical oscillations during a working memory task. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7931-7936. doi:10.1073/pnas.0732061100
- Nieder, A. (2012). Supramodal numerosity selectivity of neurons in primate prefrontal and posterior parietal cortices. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11860-11865. doi:10.1073/pnas.1204580109
- Viswanathan, P., & Nieder, A. (2013). Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices. Proceedings of the National Academy of Sciences of the United States of America, 110(27), 11187-11192. doi:10.1073/pnas.1308141110
- Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. The Quarterly Journal of Experimental Psychology A, 57(5), 835-863. doi:10.1080/02724980343000512
- Olivers, C. N. L., & Watson, D. G. (2008). Subitizing requires attention. Visual Cognition, 16(4), 439-462. doi:10.1080/13506280701825861
- Holmes, K. J., & Lourenco, S. F. (2012). Orienting numbers in mental space: Horizontal organization trumps vertical. Quarterly Journal of Experimental Psychology, 65(6), 1044-1051. doi:10.1080/17470218.2012.685079
- Viarouge, A., Hubbard, E. M., & Dehaene, S. (2014a). The organization of spatial reference frames involved in the SNARC effect. Quarterly Journal of Experimental Psychology, 67(8), 1484-1499. doi:10.1080/17470218.2014.897358
- Roettger, T. B., & Domahs, F. (2015). Grammatical number elicits SNARC and MARC effects as a function of task demands. Quarterly Journal of Experimental Psychology, 68(6), 1231-1248. doi:10.1080/17470218.2014.979843
- Leth-Steensen, C., & Citta, R. (2016). Bad-good constraints on a polarity correspondence account for the spatial-numerical association of response codes (SNARC) and markedness association of response codes (MARC) effects. Quarterly Journal of Experimental Psychology, 69(3), 482-494. doi:10.1080/17470218.2015.1055283
- Naccache, L., & Dehaene, S. (2001). The Priming Method: Imaging Unconscious Repetition Priming Reveals an Abstract Representation of Number in the Parietal Lobes. Cerebral Cortex, 11(10), 966-974. doi:10.1093/cercor/11.10.966
- Shulman, G. L., D'Avossa, G., Tansy, A. P., & Corbetta, M. (2002). Two attentional processes in the parietal lobe. Cerebral Cortex, 12(11), 1124-1131. doi:10.1093/cercor/12.11.1124
- Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1257-1270. doi:10.1098/rstb.1998.0281
- Whalen, J., Gallistel, C. R., & Gelman, R. (1999). Nonverbal Counting in Humans: The Psychophysics of Number Representation. Psychological Science, 10(2), 130-137. doi:10.1111/1467-9280.00120
- Jacob, S. N., & Nieder, A. (2009). Tuning to non-symbolic proportions in the human frontoparietal cortex. The European Journal of Neuroscience, 30(7), 1432-1442. doi:10.1111/j.1460-9568.2009.06932.x
- Kimura, M., Katayama, J., & Murohashi, H. (2006). Probability-independent and - dependent ERPs reflecting visual change detection. Psychophysiology, 43(2), 180- 189. doi:10.1111/j.1469-8986.2006.00388.x
- Kimura, M., Katayama, J., & Murohashi, H. (2008b). Involvement of memory-comparisonbased change detection in visual distraction. Psychophysiology, 45(3), 445-457. doi:10.1111/j.1469-8986.2007.00640.x
- Kimura, M., Katayama, J., Ohira, H., & Schröger, E. (2009). Visual mismatch negativity: New evidence from the equiprobable paradigm. Psychophysiology, 46(2), 402-409. doi:10.1111/j.1469-8986.2008.00767.x
- Robinson, D. A. (1965). The mechanics of human smooth pursuit eye movement. The Journal of Physiology, 180(3), 569-591. doi:10.1113/jphysiol.1965.sp007718
- Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the Quantity of Visual Items in the Primate Prefrontal Cortex. Science, 297(5587), 1708-1711. doi:10.1126/science.1072493
- Nieder, A., Diester, I., & Tudusciuc, O. (2006). Temporal and Spatial Enumeration Processes in the Primate Parietal Cortex. Science, 313(5792), 1431-1435. doi:10.1126/science.1130308
- Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an Area Involved in Eye Movements During Mental Arithmetic. Science, 324(5934), 1583-1585. doi:10.1126/science.1171599
- Starkey, P., & Cooper, R. G. (1980). Perception of Numbers by Human Infants. Science, 210(4473), 1033-1035. doi:10.1126/science.7434014
- Priftis, K., Zorzi, M., Meneghello, F., Marenzi, R., & Umiltà, C. (2006). Explicit versus Implicit Processing of Representational Space in Neglect: Dissociations in Accessing the Mental Number Line. Journal of Cognitive Neuroscience, 18(4), 680-688. doi:10.1162/jocn.2006.18.4.680
- Xu, Y. (2009). Distinctive Neural Mechanisms Supporting Visual Object Individuation and Identification. Journal of Cognitive Neuroscience, 21(3), 511-518. doi:10.1162/jocn.2008.21024
- Hyde, D. C., & Spelke, E. S. (2009). All Numbers Are Not Equal: An Electrophysiological Investigation of Small and Large Number Representations. Journal of Cognitive Neuroscience, 21(6), 1039-1053. doi:10.1162/jocn.2009.21090
- Müller, D., Winkler, I., Roeber, U., Schaffer, S., Czigler, I., & Schröger, E. (2010). Visual Object Representations Can Be Formed Outside the Focus of Voluntary Attention: Evidence from Event-related Brain Potentials. Journal of Cognitive Neuroscience, 22(6), 1179-1188. doi:10.1162/jocn.2009.21271
- Kimura, M., Schröger, E., Czigler, I., & Ohira, H. (2010b). Human Visual System Automatically Encodes Sequential Regularities of Discrete Events. Journal of Cognitive Neuroscience, 22(6), 1124-1139. doi:10.1162/jocn.2009.21299
- Hyde, D. C., & Wood, J. N. (2011). Spatial Attention Determines the Nature of Nonverbal Number Representation. Journal of Cognitive Neuroscience, 23(9), 2336-2351. doi:10.1162/jocn.2010.21581
- Krause, F., Lindemann, O., Toni, I., & Bekkering, H. (2014). Different Brains Process Numbers Differently: Structural Bases of Individual Differences in Spatial and Nonspatial Number Representations. Journal of Cognitive Neuroscience, 26(4), 768- 776. doi:10.1162/jocn_a_00518
- Königs, K., & Bremmer, F. (2010). Localization of visual and auditory stimuli during smooth pursuit eye movements. Journal of Vision, 10(8), 8. doi:10.1167/10.8.8
- Kopiske, K., Löwenkamp, C., Eloka, O., Schiller, F., Kao, C.-S., Wu, C., … Franz, V. (2015). The SNARC effect and visual and semantic features of Chinese numerals. Journal of Vision, 15(12), 910. doi:10.1167/15.12.910
- Hesse, P. N., Fiehler, K., & Bremmer, F. (2016). SNARC Effect in Different Effectors. Perception, 45(1-2), 180-195. doi:10.1177/0301006615614453
- Libertus, M. E., Woldorff, M. G., & Brannon, E. M. (2007). Electrophysiological evidence for notation independence in numerical processing. Behavioral and Brain Functions, 3, 1. doi:10.1186/1744-9081-3-1
- Kleiser, R., Konen, C. S., Seitz, R. J., & Bremmer, F. (2009). I know where you'll look: an fMRI study of oculomotor intention and a change of motor plan. Behavioral and Brain Functions, 5(1), 27. doi:10.1186/1744-9081-5-27
- Roitman, J. D., Brannon, E. M., & Platt, M. L. (2007). Monotonic Coding of Numerosity in Macaque Lateral Intraparietal Area. PLoS Biology, 5(8), e208. doi:10.1371/journal.pbio.0050208
- Lugli, L., Baroni, G., Anelli, F., Borghi, A. M., & Nicoletti, R. (2013). Counting Is Easier while Experiencing a Congruent Motion. PloS One, 8(5), e64500. doi:10.1371/journal.pone.0064500
- Viarouge, A., Hubbard, E. M., & McCandliss, B. D. (2014b). The Cognitive Mechanisms of the SNARC Effect: An Individual Differences Approach. PloS One, 9(4), e95756. doi:10.1371/journal.pone.0095756
- Schlack, A., Sterbing-D'Angelo, S. J., Hartung, K., Hoffmann, K.-P., & Bremmer, F. (2005). Multisensory Space Representations in the Macaque Ventral Intraparietal Area. The Journal of Neuroscience, 25(18), 4616-4625. doi:10.1523/JNEUROSCI.0455-05.2005
- Merkley, R., Wilkey, E. D., & Matejko, A. A. (2016). Exploring the Origins and Development of the Visual Number Form Area: A Functionally Specialized and Domain-Specific Region for the Processing of Number Symbols? The Journal of Neuroscience, 36(17), 4659-4661. doi:10.1523/JNEUROSCI.0710-16.2016
- Konen, C. S., & Kastner, S. (2008). Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. The Journal of Neuroscience, 28(33), 8361-8375. doi:10.1523/JNEUROSCI.1930-08.2008
- Stefanics, G., Kimura, M., & Czigler, I. (2011). Visual mismatch negativity reveals automatic detection of sequential regularity violation. Frontiers in Human Neuroscience, 5, 46. doi:10.3389/fnhum.2011.00046
- Stothart, G., & Kazanina, N. (2013). Oscillatory characteristics of the visual mismatch negativity: what evoked potentials aren't telling us. Frontiers in Human Neuroscience, 7, 426. doi:10.3389/fnhum.2013.00426
- Riello, M., & Rusconi, E. (2011). Unimanual SNARC effect: hand matters. Frontiers in Psychology, 2, 372. doi:10.3389/fpsyg.2011.00372
- Irwin, D. E., & Thomas, L. E. (2007). The effect of saccades on number processing. Perception & Psychophysics, 69(3), 450-458. doi:10.3758/bf03193765
- Schwarz, W., & Keus, I. M. (2004). Moving the eyes along the mental number line: Comparing SNARC effects with saccadic and manual responses. Perception & Psychophysics, 66(4), 651-664. doi:10.3758/bf03194909
- Keus, I. M., & Schwarz, W. (2005). Searching for the functional locus of the SNARC effect: Evidence for a response-related origin. Memory & Cognition, 33(4), 681-695. doi:10.3758/bf03195335
- Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 32(4), 662-673. doi:10.3758/bf03195857
- Verguts, T., & Van Opstal, F. (2005). Dissociation of the distance effect and size effect in one-digit numbers. Psychonomic Bulletin & Review, 12(5), 925-930. doi:10.3758/BF03196787
- Nicholls, M. E. R., Loftus, A. M., & Gevers, W. (2008). Look, no hands: A perceptual task shows that number magnitude induces shifts of attention. Psychonomic Bulletin & Review, 15(2), 413-418. doi:10.3758/PBR.15.2.413
- Luck, S. J. (2005). An Introduction to the Event-Related Potential Technique. (M. S. Gazzaniga, Ed.). Cambridge, Massachusetts, United States of America: The MIT Press.
- Seewald, B. (1998). Aphasie und Natürlichkeit - Abbauhierarchien im Bereich der Grammatik [Aphasia and Naturalness - Reduction Hierarchy in Grammar]. Wiesbaden, Germany: Springer Fachmedien Wiesbaden GmbH.
- Näätänen, R. (1992). Attention and brain Function. Hillsdale, New Jersey, United States of America: Lawrence Erlbaum Associates.
- Kimura, M., Katayama, J., & Murohashi, H. (2008a). Attention switching function of memory-comparison-based change detection system in the visual modality.
- Quasthoff, U., Richter, M., & Biermann, C. (2006). Corpus Portal for Search in Monolingual Corpora. Proceedings of the Fifth International Conference on Language Resources and Evaluation, LREC 2006, Genoa, 1799-1802.
- Kenemans, J. L., Jong, T. G., & Verbaten, M. N. (2003). Detection of visual change: mismatch or rareness? NeuroReport, 14(9), 1239-1242. doi:10.1097/00001756- 200307010-00010
- Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308. doi:10.1111/j.1469- 8986.1994.tb02218.x
- McCloskey, M., Aliminosa, D., & Sokol, S. M. (1991). Facts, Rules, and Procedures in Normal Calculation: Evidence from Multiple Single-Patient Studies of Impaired Arithmetic Fact Retrieval. Brain and Cognition, 17(2), 154-203. doi:10.1016/0278- 2626(91)90074-I
- Holmes, K. J., & Lourenco, S. F. (2011). Horizontal Trumps Vertical in the Spatial Organization of Numerical Magnitude. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 2276-2281). Austin, TX: Cognitive Science Society.
- Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced gamma-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans. The Journal of Neuroscience, 18(11), 4244-4254.
- McCarthy, G., Luby, M., Gore, J., & Goldman-Rakic, P. (1997). Infrequent Events Transiently Activate Human Prefrontal and Parietal Cortex as Measured by Functional MRI. Journal of Neurophysiology, 77(3), 1630-1634.
- Hopf, J.-M., Vogel, E., Woodman, G., Heinze, H.-J., & Luck, S. J. (2002). Localizing Visual Discrimination Processes in Time and Space. Journal of Neurophysiology, 88(4), 2088-2095.
- Winter, B., & Matlock, T. (2013). More is up… and right: Random number generation along two axes. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 3789-3974). Austin, TX: Cognitive Science Society.
- Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., McNamara, J. O., & Williams, S. M. (2004). Neuroscience (3rd Ed.). Sunderland, Massachusetts, United States of America: Sinauer Associates, Inc.
- Santiago, J., & Lakens, D. (2013). Polarity correspondence does not explain the SNARC effect. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachmuz (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 1259-1264). Austin, TX: Cognitive Science Society.
- Piazza, M., Giacomini, E., Le Bihan, D., & Dehaene, S. (2003). Single-trial classification of parallel pre-attentive and serial attentive processes using functional magnetic
- Vesia, M., & Crawford, J. D. (2012). Specialization of reach function in human posterior parietal cortex. Experimental Brain Research, 221(1), 1-18. doi:10.1007/s00221-012- 3158-9
- Mandler, G., & Shebo, B. J. (1982). Subitizing: An Analysis of Its Component Processes. Journal of Experimental Psychology: General, 111(1), 1-22. doi:10.1037/0096- 3445.111.1.1
- Leigh, R. J., & Zee, D. S. (2006). The Neurology of Eye Movements. (4th Ed.). New York, New York, United States of America: Oxford University Press.
- Huang, W.-J., Chen, W.-W., & Zhang, X. (2015). The neurophysiology of P 300 - an integrated review. European Review for Medical and Pharmacological Sciences, 19(8), 1480-1488.
- Seno, T., Taya, S., Yamada, Y., Ihaya, K., Ito, H., & Sunago, S. (2012). Vection (self-motion perception) alters cognitive states, cognition of time, mental number line and personality. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the Cognitive Science Society (pp. 2306-2309). Austin, TX: Cognitive Science Society.