Publikationsserver der Universitätsbibliothek Marburg

Titel:An Eye on Numbers: The Processing of Numerical Information in the Context of Visual Perception
Autor:Hesse, Philipp Nikolaus
Weitere Beteiligte: Bremmer, Frank (Prof. Dr.)
URN: urn:nbn:de:hebis:04-z2016-02365
DDC: Physik
Titel (trans.):Zahlen im Blick: Verarbeitung numerischer Information im Kontext visueller Wahrnehmung


prä-attentiv, SNARC, SNARC, MMN, Sehen, Vision, Gehirn, Zahl, Brain, Zahlenwahrnehmung, Perception, Number

The capability of understanding and processing numerical information is a critical skill that allows humans to compare, calculate, judge and remember numbers and numerosities. Without this capability, countless processes in everyday life would be very hard to accomplish. This ranges from simple actions like playing dice to the invention of modern techniques, such as personal computers and satellite-based navigation. Hence, it is important to understand the neural processes underlying the (human) perception of numbers and numerosities. As a contribution to this very complex research field I performed three studies using psychophysical methods and electroencephalography (EEG) with the aim to draw general conclusions on human number perception and the processing of numerical information. In the first two studies, I investigated the effect of spatial numerical association of response codes (SNARC). This effect is commonly seen as evidence for the concept of a mental number line (MNL), which is a metaphor for the fact, that the human brain organizes numbers on a mentally conceived line with small numbers on the left and large numbers on the right. In my first study I showed the effector dependence of the SNARC effect, by measuring the SNARC effect for three different effectors: bimanual finger responses, arm pointing responses and saccadic responses. In my second study, I showed that the concept of the mental number line can be extended to a frontoparallel mental number plane, where small numbers are represented left and down and large numbers are represented right and up. I achieved this result by investigating the SNARC effect for cardinal axes (horizontal and vertical) and for diagonal axes in one and the same subject. This approach allowed me to conclude that the strength of the SNARC effect on the diagonal axes can be expressed as a linear combination of the strength of the SNARC effect along the two cardinal axes. In this second study I measured the SNARC effect also regarding two sensory modalities (visual presented Arabic digits and spoken number words). The comparison of the SNARC effect elicited by these two modalities revealed that the strength of the SNARC effect depended on the modality of number presentation. Together with the results of the effector dependency of the SNARC effect from my first study this led me to propose the existence of a distributed “SNARC network” in the human brain. Within the framework of this proposal the SNARC effect is elicited in a central number stage (CNS) as a consequence of the interaction between numbers and space in the human brain (e.g. as explicated by the MNL). But in addition, the SNARC effect is further modulated by early, modality dependent processing stages and late, effector dependent processing stages. I hypothesize that these stages modulate the SNARC effect, but not the relationship between numbers and space per se. My first two studies, explored the SNARC effect, based on abstract numbers represented in the, so-called, approximate number system (ANS). In addition to the number processing in the ANS, it is known that the human brain is capable of perceiving very small magnitudes (up to four) immediately, a phenomenon called subitizing. Previous studies showed that this perception, although very fast, might be influenced by attentional load (Railo et al., 2008; Olivers & Watson, 2008; Anobile et al., 2012). In my third study, I measured the neural basis of the processing of numerical information non-invasively by means of EEG and used the effect of visual mismatch negativity to demonstrate the pre-attentive processing of quantities in the subitizing range. In this experiment, I rapidly pre-sented stimuli, consisting of one, two or three circular patches. To ensure that numerosity was the relevant factor, patches were varied for low-level visual features (luminance vs. individual patch size). While participants were engaged in a difficult visual detection task, changes of the number of patches (standard vs. deviant) were processed pre-attentively. The results of my study provide evidence for the idea that numerosity in this small (subitizing) range is processed pre-attentively. Taken together, I showed that the mental number line could be extended to a frontoparallel mental number plane and eventually even to a three-dimensional mental number space. I found evidence for the dependence of the SNARC effect on sensory modalities as well as on response effectors, suggesting the existence of a distributed SNARC-brain-network. Finally, I revealed some evidence that number processing of small magnitudes in the subitizing range might be pre-attentive.

Bibliographie / References

  1. Menon, V., Rivera, S. M., White, C. D., Glover, G. H., & Reiss, A. L. (2000). Dissociating Prefrontal and Parietal Cortex Activation during Arithmetic Processing. NeuroImage, 12(4), 357-365. doi:10.1006/nimg.2000.0613
  2. Pinel, P., Dehaene, S., Rivière, D., & LeBihan, D. (2001). Modulation of Parietal Activation by Semantic Distance in a Number Comparison Task. NeuroImage, 14(5), 1013- 1026. doi:10.1006/nimg.2001.0913
  3. Piazza, M., Mechelli, A., Butterworth, B., & Price, C. J. (2002). Are Subitizing and Counting Implemented as Separate or Functionally Overlapping Processes? NeuroImage, 15(2), 435-446. doi:10.1006/nimg.2001.0980
  4. Konen, C. S., Kleiser, R., Bremmer, F., & Seitz, R. J. (2007). Different cortical activations during visuospatial attention and the intention to perform a saccade. Experimental Brain Research, 182(3), 333-341. doi:10.1007/s00221-007-0995-z
  5. Klingenhoefer, S., & Bremmer, F. (2009). Perisaccadic localization of auditory stimuli. Experimental Brain Research, 198(2-3), 411-423. doi:10.1007/s00221-009-1869-3
  6. Land, M. F. (1999). Motion and vision: why animals move their eyes. Journal of Comparative Physiology A, 185(4), 341-352. doi:10.1007/s003590050393
  7. Huber, S., Klein, E., Graf, M., Nuerk, H.-C., Moeller, K., & Willmes, K. (2015). Embodied markedness of parity? Examining handedness effects on parity judgments. Psychological Research, 79(6), 963-977. doi:10.1007/s00426-014-0626-9
  8. Herrmann, C. S., Rach, S., Vosskuhl, J., & Strüber, D. (2014). Time-Frequency Analysis of Event-Related Potentials: A Brief Tutorial. Brain Topography, 27(4), 438-450. doi:10.1007/s10548-013-0327-5
  9. Odom, J. V., Bach, M., Brigell, M., Holder, G. E., McCulloch, D. L., Tormene, A. P., & Vaegan. (2010). ISCEV standard for clinical visual evoked potentials (2009 update). Documenta Ophthalmologica, 120(1), 111-119. doi:10.1007/s10633-009-9195-4
  10. Khodanovich, M. Y., Esipenko, E. A., Svetlik, M. V., & Krutenkova, E. P. (2010). A Visual Analog of Mismatch Negativity When Stimuli Differ in Duration. Neuroscience and Behavioral Physiology, 40(6), 653-661. doi:10.1007/s11055-010-9308-2
  11. Svenson, O. (1975). Analysis of time required by children for simple additions. Acta Psychologica, 39, 289-302. doi:10.1016/0001-6918(75)90013-x
  12. Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313-329. doi:10.1016/0001-6918(78)90006-9
  13. Jasper, H. H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroencephalography and Clinical Neurophysiology Supplement, 10(2), 370-375. doi:10.1016/0013-4694(58)90053-1
  14. Mishkin, M., & Ungerleider, L. G. (1982). Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural Brain Research, 6(1), 57-77. doi:10.1016/0166-4328(82)90081-X
  15. Plaisier, M. A., Bergmann Tiest, W. M., & Kappers, A. M. L. (2009). One, two, three, many - Subitizing in active touch. Acta Psychologica, 131(2), 163-170. doi:10.1016/j.actpsy.2009.04.003
  16. Kimura, M., Widmann, A., & Schröger, E. (2010c). Human visual system automatically represents large-scale sequential regularities. Brain Research, 1317, 165-179. doi:10.1016/j.brainres.2009.12.076
  17. Ruusuvirta, T., & Astikainen, P. (2016). Preattentive and attentive responses to changes in small numerosities of tones in adult humans. Brain Research, 1634, 68-74. doi:10.1016/j.brainres.2015.12.047
  18. Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544-2590. doi:10.1016/j.clinph.2007.04.026
  19. Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24(1), 48-56. doi:10.1016/j.cogbrainres.2004.12.005
  20. Hung, Y., Hung, D. L., Tzeng, O. J.-L., & Wu, D. H. (2008). Flexible spatial mapping of different notations of numbers in Chinese readers. Cognition, 106(3), 1441-1450. doi:10.1016/j.cognition.2007.04.017
  21. Railo, H., Koivisto, M., Revonsuo, A., & Hannula, M. M. (2008). The role of attention in subitizing. Cognition, 107(1), 82-104. doi:10.1016/j.cognition.2007.08.004
  22. Jarick, M., Dixon, M. J., Maxwell, E. C., Nicholls, M. E. R., & Smilek, D. (2009). The ups and downs (and lefts and rights) of synaesthetic number forms: Validation from spatial cueing and SNARC-type tasks. Cortex, 45(10), 1190-1199. doi:10.1016/j.cortex.2009.04.015
  23. Plodowski, A., Swainson, R., Jackson, G. M., Rorden, C., & Jackson, S. R. (2003). Mental Representation of Number in Different Numerical Forms. Current Biology, 13(23), 2045-2050. doi:10.1016/j.cub.2003.11.023
  24. Loetscher, T., Schwarz, U., Schubiger, M., & Brugger, P. (2008). Head turns bias the brain's internal random generator. Current Biology, 18(2), R60-R62. doi:10.1016/j.cub.2007.11.015
  25. Loetscher, T., Bockisch, C. J., Nicholls, M. E. R., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20(6), R264-R265. doi:10.1016/j.cub.2010.01.015
  26. Kimura, M. (2012). Visual mismatch negativity and unintentional temporal-context-based prediction in vision. International Journal of Psychophysiology, 83(2), 144-155. doi:10.1016/j.ijpsycho.2011.11.010
  27. Qian, X., Liu, Y., Xiao, B., Gao, L., Li, S., Dang, L., … Zhao, L. (2014). The visual mismatch negativity (vMMN): Toward the optimal paradigm. International Journal of Psychophysiology, 93(3), 311-315. doi:10.1016/j.ijpsycho.2014.06.004
  28. Hoffmann, D., Hornung, C., Martin, R., & Schiltz, C. (2013). Developing number-space associations: SNARC effects using a color discrimination task in 5-year-olds. Journal of Experimental Child Psychology, 116(4), 775-791. doi:10.1016/j.jecp.2013.07.013
  29. Winter, B., Matlock, T., Shaki, S., & Fischer, M. H. (2015). Mental number space in three dimensions. Neuroscience and Biobehavioral Reviews, 57, 209-219. doi:10.1016/j.neubiorev.2015.09.005
  30. Pazo-Alvarez, P., Amenedo, E., Lorenzo-López, L., & Cadaveira, F. (2004). Effects of stimulus location on automatic detection of changes in motion direction in the human brain. Neuroscience Letters, 371(2-3), 111-116. doi:10.1016/j.neulet.2004.08.073
  31. Kimura, M., Ohira, H., & Schröger, E. (2010a). Localizing sensory and cognitive systems for pre-attentive visual deviance detection: An sLORETA analysis of the data of Kimura et al. (2009). Neuroscience Letters, 485(3), 198-203. doi:10.1016/j.neulet.2010.09.011
  32. Qiu, X., Yang, X., Qiao, Z., Wang, L., Ning, N., Shi, J., … Yang, Y. (2011). Impairment in processing visual information at the pre-attentive stage in patients with a major depressive disorder: A visual mismatch negativity study. Neuroscience Letters, 491(1), 53-57. doi:10.1016/j.neulet.2011.01.006
  33. Konen, C. S., Kleiser, R., Wittsack, H.-J., Bremmer, F., & Seitz, R. J. (2004). The encoding of saccadic eye movements within human posterior parietal cortex. NeuroImage, 22(1), 304-314. doi:10.1016/j.neuroimage.2003.12.039
  34. Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547-555. doi:10.1016/j.neuron.2004.10.014
  35. Wallisch, P., & Movshon, J. A. (2008). Structure and Function Come Unglued in the Visual Cortex. Neuron, 60(2), 195-197. doi:10.1016/j.neuron.2008.10.008
  36. Kaminiarz, A., Krekelberg, B., & Bremmer, F. (2007). Localization of visual targets during optokinetic eye movements. Vision Research, 47(6), 869-878. doi:10.1016/j.visres.2006.10.015
  37. Levi, D. M. (2008). Crowding - an essential bottleneck for object recognition: a minireview. Vision Research, 48(5), 635-654. doi:10.1016/j.visres.2007.12.009
  38. Knöll, J., Morrone, M. C., & Bremmer, F. (2013). Spatio-temporal topography of saccadic overestimation of time. Vision Research, 83, 56-65. doi:10.1016/j.visres.2013.02.013
  39. Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80(1-2), 127-158. doi:10.1016/S0010-0277(00)00156-6
  40. Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? Putting the tens and units back in different bins. Cognition, 82(1), B25-B33. doi:10.1016/s0010-0277(01)00142-1
  41. Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1-B11. doi:10.1016/S0010-0277(99)00066-9
  42. Wood, G., Nuerk, H.-C., & Willmes, K. (2006a). Crossed hands and the SNARC effect: a failure to replicate Dehaene, Bossini and Giraux (1993). Cortex, 42(8), 1069-1079. doi:10.1016/s0010-9452(08)70219-3
  43. Wood, G., Nuerk, H.-C., & Willmes, K. (2006b). Variability of the SNARC effect: Systematic interindividual differences or just random error? Cortex, 42, 1119-1123. doi:10.1016/s0010-9452(08)70223-5
  44. Snyder, L. H., Batista, A. P., & Andersen, R. A. (2000). Intention-related activity in the posterior parietal cortex: a review. Vision Research, 40(10-12), 1433-1441. doi:10.1016/S0042-6989(00)00052-3
  45. Lappe, M., & Hoffmann, K.-P. (2000). Optic flow and eye movements. International Review of Neurobiology, 44, 29-47. doi:10.1016/s0074-7742(08)60736-9
  46. Ilg, U. J. (1997). Slow eye movements. Progress in Neurobiology, 53(3), 293-329. doi:10.1016/S0301-0082(97)00039-7
  47. Wojciulik, E., & Kanwisher, N. (1999). The Generality of Parietal Involvement in Visual Attention. Neuron, 23(4), 747-764. doi:10.1016/S0896-6273(01)80033-7
  48. Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe. Neuron, 33(3), 475-487. doi:10.1016/s0896-6273(02)00575-5
  49. Tallon-Baudry, C., & Bertrand, O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends in Cognitive Sciences, 3(4), 151-162. doi:10.1016/S1364-6613(99)01299-1
  50. Jacobsen, T., & Schröger, E. (2003). Measuring duration mismatch negativity. Clinical Neurophysiology, 114(6), 1133-1143. doi:10.1016/S1388-2457(03)00043-9
  51. Sussman, E. S. (2007). A New View on the MMN and Attention Debate: The Role of Context in Processing Auditory Events. Journal of Psychophysiology, 21(3-4), 164- 175. doi:10.1027/0269-8803.21.34.164
  52. Nuerk, H.-C., Wood, G., & Willmes, K. (2005). The Universal SNARC Effect. Experimental Psychology, 52(3), 187-194. doi:10.1027/1618-3169.52.3.187
  53. Schwarz, W., & Müller, D. (2006). Spatial Associations in Number-Related Tasks: A Comparison of Manual and Pedal Responses. Experimental Psychology, 53(1), 4-15. doi:10.1027/1618-3169.53.1.4
  54. Rayner, K. (1998). Eye movements in Reading and Information Processing: 20 Years of Research. Psychological Bulletin, 124(3), 372-422. doi:10.1037/0033-2909.124.3.372
  55. Proctor, R. W., & Cho, Y. S. (2006). Polarity Correspondence: A General Principle for Performance of Speeded Binary Classification Tasks. Psychological Bulletin, 132(3), 416-442. doi:10.1037/0033-2909.132.3.416
  56. Trick, L. M., & Pylyshyn, Z. W. (1994). Why Are Small and Large Numbers Enumerated Differently? A Limited-Capacity Preattentive Stage in Vision. Psychological Review, 101(1), 80-102. doi:10.1037/0033-295X.101.1.80
  57. Trick, L. M., & Pylyshyn, Z. W. (1993). What Enumeration Studies Can Show Us About Spatial Attention: Evidence for Limited Capacity Preattentive Processing. Journal of Experimental Psychology: Human Perception and Performance, 19(2), 331-351. doi:10.1037/0096-1523.19.2.331
  58. Shaki, S., & Fischer, M. H. (2012). Multiple Spatial Mappings in Numerical Cognition. Journal of Experimental Psychology: Human Perception and Performance, 38(3), 804-809. doi:10.1037/a0027562
  59. Moyer, R. S., & Landauer, T. K. (1967). Time required for Judgements of Numerical Inequality. Nature, 215(5109), 1519-1520. doi:10.1038/2151519a0
  60. Lappe, M., Awater, H., & Krekelberg, B. (2000). Postsaccadic visual references generate presaccadic compression of space. Nature, 403(6772), 892-895. doi:10.1038/35002588
  61. Ross, J., Morrone, M. C., & Burr, D. C. (1997). Compression of visual space before saccades. Nature, 386(6625), 598-601. doi:10.1038/386598a0
  62. Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440(7080), 91-95. doi:10.1038/nature04262
  63. Morrone, M. C., Ross, J., & Burr, D. C. (1997). Apparent Position of Visual Targets during Real and Simulated Saccadic Eye Movements. The Journal of Neuroscience, 17(20), 7941-7953. doi:10.1038/nn1488
  64. Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye movements in visual perception. Nature Reviews. Neuroscience, 5(3), 229-240. doi:10.1038/nrn1348
  65. Königs, K., Knöll, J., & Bremmer, F. (2007). Localisation of auditory targets during optokinetic nystagmus. Perception, 36(10), 1507-1512. doi:10.1068/p5849
  66. Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences of the United States of America, 101(19), 7457-7462. doi:10.1073/pnas.0402239101
  67. Rizzuto, D. S., Madsen, J. R., Bromfield, E. B., Schulze-Bonhage, A., Seelig, D., Aschenbrenner-Scheibe, R., & Kahana, M. J. (2003). Reset of human neocortical oscillations during a working memory task. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7931-7936. doi:10.1073/pnas.0732061100
  68. Nieder, A. (2012). Supramodal numerosity selectivity of neurons in primate prefrontal and posterior parietal cortices. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11860-11865. doi:10.1073/pnas.1204580109
  69. Viswanathan, P., & Nieder, A. (2013). Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices. Proceedings of the National Academy of Sciences of the United States of America, 110(27), 11187-11192. doi:10.1073/pnas.1308141110
  70. Nuerk, H.-C., Iversen, W., & Willmes, K. (2004). Notational modulation of the SNARC and the MARC (linguistic markedness of response codes) effect. The Quarterly Journal of Experimental Psychology A, 57(5), 835-863. doi:10.1080/02724980343000512
  71. Olivers, C. N. L., & Watson, D. G. (2008). Subitizing requires attention. Visual Cognition, 16(4), 439-462. doi:10.1080/13506280701825861
  72. Holmes, K. J., & Lourenco, S. F. (2012). Orienting numbers in mental space: Horizontal organization trumps vertical. Quarterly Journal of Experimental Psychology, 65(6), 1044-1051. doi:10.1080/17470218.2012.685079
  73. Viarouge, A., Hubbard, E. M., & Dehaene, S. (2014a). The organization of spatial reference frames involved in the SNARC effect. Quarterly Journal of Experimental Psychology, 67(8), 1484-1499. doi:10.1080/17470218.2014.897358
  74. Roettger, T. B., & Domahs, F. (2015). Grammatical number elicits SNARC and MARC effects as a function of task demands. Quarterly Journal of Experimental Psychology, 68(6), 1231-1248. doi:10.1080/17470218.2014.979843
  75. Leth-Steensen, C., & Citta, R. (2016). Bad-good constraints on a polarity correspondence account for the spatial-numerical association of response codes (SNARC) and markedness association of response codes (MARC) effects. Quarterly Journal of Experimental Psychology, 69(3), 482-494. doi:10.1080/17470218.2015.1055283
  76. Naccache, L., & Dehaene, S. (2001). The Priming Method: Imaging Unconscious Repetition Priming Reveals an Abstract Representation of Number in the Parietal Lobes. Cerebral Cortex, 11(10), 966-974. doi:10.1093/cercor/11.10.966
  77. Shulman, G. L., D'Avossa, G., Tansy, A. P., & Corbetta, M. (2002). Two attentional processes in the parietal lobe. Cerebral Cortex, 12(11), 1124-1131. doi:10.1093/cercor/12.11.1124
  78. Hillyard, S. A., Vogel, E. K., & Luck, S. J. (1998). Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1257-1270. doi:10.1098/rstb.1998.0281
  79. Whalen, J., Gallistel, C. R., & Gelman, R. (1999). Nonverbal Counting in Humans: The Psychophysics of Number Representation. Psychological Science, 10(2), 130-137. doi:10.1111/1467-9280.00120
  80. Jacob, S. N., & Nieder, A. (2009). Tuning to non-symbolic proportions in the human frontoparietal cortex. The European Journal of Neuroscience, 30(7), 1432-1442. doi:10.1111/j.1460-9568.2009.06932.x
  81. Kimura, M., Katayama, J., & Murohashi, H. (2006). Probability-independent and - dependent ERPs reflecting visual change detection. Psychophysiology, 43(2), 180- 189. doi:10.1111/j.1469-8986.2006.00388.x
  82. Kimura, M., Katayama, J., & Murohashi, H. (2008b). Involvement of memory-comparisonbased change detection in visual distraction. Psychophysiology, 45(3), 445-457. doi:10.1111/j.1469-8986.2007.00640.x
  83. Kimura, M., Katayama, J., Ohira, H., & Schröger, E. (2009). Visual mismatch negativity: New evidence from the equiprobable paradigm. Psychophysiology, 46(2), 402-409. doi:10.1111/j.1469-8986.2008.00767.x
  84. Robinson, D. A. (1965). The mechanics of human smooth pursuit eye movement. The Journal of Physiology, 180(3), 569-591. doi:10.1113/jphysiol.1965.sp007718
  85. Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the Quantity of Visual Items in the Primate Prefrontal Cortex. Science, 297(5587), 1708-1711. doi:10.1126/science.1072493
  86. Nieder, A., Diester, I., & Tudusciuc, O. (2006). Temporal and Spatial Enumeration Processes in the Primate Parietal Cortex. Science, 313(5792), 1431-1435. doi:10.1126/science.1130308
  87. Knops, A., Thirion, B., Hubbard, E. M., Michel, V., & Dehaene, S. (2009). Recruitment of an Area Involved in Eye Movements During Mental Arithmetic. Science, 324(5934), 1583-1585. doi:10.1126/science.1171599
  88. Starkey, P., & Cooper, R. G. (1980). Perception of Numbers by Human Infants. Science, 210(4473), 1033-1035. doi:10.1126/science.7434014
  89. Priftis, K., Zorzi, M., Meneghello, F., Marenzi, R., & Umiltà, C. (2006). Explicit versus Implicit Processing of Representational Space in Neglect: Dissociations in Accessing the Mental Number Line. Journal of Cognitive Neuroscience, 18(4), 680-688. doi:10.1162/jocn.2006.18.4.680
  90. Xu, Y. (2009). Distinctive Neural Mechanisms Supporting Visual Object Individuation and Identification. Journal of Cognitive Neuroscience, 21(3), 511-518. doi:10.1162/jocn.2008.21024
  91. Hyde, D. C., & Spelke, E. S. (2009). All Numbers Are Not Equal: An Electrophysiological Investigation of Small and Large Number Representations. Journal of Cognitive Neuroscience, 21(6), 1039-1053. doi:10.1162/jocn.2009.21090
  92. Müller, D., Winkler, I., Roeber, U., Schaffer, S., Czigler, I., & Schröger, E. (2010). Visual Object Representations Can Be Formed Outside the Focus of Voluntary Attention: Evidence from Event-related Brain Potentials. Journal of Cognitive Neuroscience, 22(6), 1179-1188. doi:10.1162/jocn.2009.21271
  93. Kimura, M., Schröger, E., Czigler, I., & Ohira, H. (2010b). Human Visual System Automatically Encodes Sequential Regularities of Discrete Events. Journal of Cognitive Neuroscience, 22(6), 1124-1139. doi:10.1162/jocn.2009.21299
  94. Hyde, D. C., & Wood, J. N. (2011). Spatial Attention Determines the Nature of Nonverbal Number Representation. Journal of Cognitive Neuroscience, 23(9), 2336-2351. doi:10.1162/jocn.2010.21581
  95. Krause, F., Lindemann, O., Toni, I., & Bekkering, H. (2014). Different Brains Process Numbers Differently: Structural Bases of Individual Differences in Spatial and Nonspatial Number Representations. Journal of Cognitive Neuroscience, 26(4), 768- 776. doi:10.1162/jocn_a_00518
  96. Königs, K., & Bremmer, F. (2010). Localization of visual and auditory stimuli during smooth pursuit eye movements. Journal of Vision, 10(8), 8. doi:10.1167/10.8.8
  97. Kopiske, K., Löwenkamp, C., Eloka, O., Schiller, F., Kao, C.-S., Wu, C., … Franz, V. (2015). The SNARC effect and visual and semantic features of Chinese numerals. Journal of Vision, 15(12), 910. doi:10.1167/15.12.910
  98. Hesse, P. N., Fiehler, K., & Bremmer, F. (2016). SNARC Effect in Different Effectors. Perception, 45(1-2), 180-195. doi:10.1177/0301006615614453
  99. Libertus, M. E., Woldorff, M. G., & Brannon, E. M. (2007). Electrophysiological evidence for notation independence in numerical processing. Behavioral and Brain Functions, 3, 1. doi:10.1186/1744-9081-3-1
  100. Kleiser, R., Konen, C. S., Seitz, R. J., & Bremmer, F. (2009). I know where you'll look: an fMRI study of oculomotor intention and a change of motor plan. Behavioral and Brain Functions, 5(1), 27. doi:10.1186/1744-9081-5-27
  101. Roitman, J. D., Brannon, E. M., & Platt, M. L. (2007). Monotonic Coding of Numerosity in Macaque Lateral Intraparietal Area. PLoS Biology, 5(8), e208. doi:10.1371/journal.pbio.0050208
  102. Lugli, L., Baroni, G., Anelli, F., Borghi, A. M., & Nicoletti, R. (2013). Counting Is Easier while Experiencing a Congruent Motion. PloS One, 8(5), e64500. doi:10.1371/journal.pone.0064500
  103. Viarouge, A., Hubbard, E. M., & McCandliss, B. D. (2014b). The Cognitive Mechanisms of the SNARC Effect: An Individual Differences Approach. PloS One, 9(4), e95756. doi:10.1371/journal.pone.0095756
  104. Schlack, A., Sterbing-D'Angelo, S. J., Hartung, K., Hoffmann, K.-P., & Bremmer, F. (2005). Multisensory Space Representations in the Macaque Ventral Intraparietal Area. The Journal of Neuroscience, 25(18), 4616-4625. doi:10.1523/JNEUROSCI.0455-05.2005
  105. Merkley, R., Wilkey, E. D., & Matejko, A. A. (2016). Exploring the Origins and Development of the Visual Number Form Area: A Functionally Specialized and Domain-Specific Region for the Processing of Number Symbols? The Journal of Neuroscience, 36(17), 4659-4661. doi:10.1523/JNEUROSCI.0710-16.2016
  106. Konen, C. S., & Kastner, S. (2008). Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. The Journal of Neuroscience, 28(33), 8361-8375. doi:10.1523/JNEUROSCI.1930-08.2008
  107. Stefanics, G., Kimura, M., & Czigler, I. (2011). Visual mismatch negativity reveals automatic detection of sequential regularity violation. Frontiers in Human Neuroscience, 5, 46. doi:10.3389/fnhum.2011.00046
  108. Stothart, G., & Kazanina, N. (2013). Oscillatory characteristics of the visual mismatch negativity: what evoked potentials aren't telling us. Frontiers in Human Neuroscience, 7, 426. doi:10.3389/fnhum.2013.00426
  109. Riello, M., & Rusconi, E. (2011). Unimanual SNARC effect: hand matters. Frontiers in Psychology, 2, 372. doi:10.3389/fpsyg.2011.00372
  110. Irwin, D. E., & Thomas, L. E. (2007). The effect of saccades on number processing. Perception & Psychophysics, 69(3), 450-458. doi:10.3758/bf03193765
  111. Schwarz, W., & Keus, I. M. (2004). Moving the eyes along the mental number line: Comparing SNARC effects with saccadic and manual responses. Perception & Psychophysics, 66(4), 651-664. doi:10.3758/bf03194909
  112. Keus, I. M., & Schwarz, W. (2005). Searching for the functional locus of the SNARC effect: Evidence for a response-related origin. Memory & Cognition, 33(4), 681-695. doi:10.3758/bf03195335
  113. Ito, Y., & Hatta, T. (2004). Spatial structure of quantitative representation of numbers: Evidence from the SNARC effect. Memory & Cognition, 32(4), 662-673. doi:10.3758/bf03195857
  114. Verguts, T., & Van Opstal, F. (2005). Dissociation of the distance effect and size effect in one-digit numbers. Psychonomic Bulletin & Review, 12(5), 925-930. doi:10.3758/BF03196787
  115. Nicholls, M. E. R., Loftus, A. M., & Gevers, W. (2008). Look, no hands: A perceptual task shows that number magnitude induces shifts of attention. Psychonomic Bulletin & Review, 15(2), 413-418. doi:10.3758/PBR.15.2.413
  116. Luck, S. J. (2005). An Introduction to the Event-Related Potential Technique. (M. S. Gazzaniga, Ed.). Cambridge, Massachusetts, United States of America: The MIT Press.
  117. Seewald, B. (1998). Aphasie und Natürlichkeit - Abbauhierarchien im Bereich der Grammatik [Aphasia and Naturalness - Reduction Hierarchy in Grammar]. Wiesbaden, Germany: Springer Fachmedien Wiesbaden GmbH.
  118. Näätänen, R. (1992). Attention and brain Function. Hillsdale, New Jersey, United States of America: Lawrence Erlbaum Associates.
  119. Kimura, M., Katayama, J., & Murohashi, H. (2008a). Attention switching function of memory-comparison-based change detection system in the visual modality.
  120. Quasthoff, U., Richter, M., & Biermann, C. (2006). Corpus Portal for Search in Monolingual Corpora. Proceedings of the Fifth International Conference on Language Resources and Evaluation, LREC 2006, Genoa, 1799-1802.
  121. Kenemans, J. L., Jong, T. G., & Verbaten, M. N. (2003). Detection of visual change: mismatch or rareness? NeuroReport, 14(9), 1239-1242. doi:10.1097/00001756- 200307010-00010
  122. Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291-308. doi:10.1111/j.1469- 8986.1994.tb02218.x
  123. McCloskey, M., Aliminosa, D., & Sokol, S. M. (1991). Facts, Rules, and Procedures in Normal Calculation: Evidence from Multiple Single-Patient Studies of Impaired Arithmetic Fact Retrieval. Brain and Cognition, 17(2), 154-203. doi:10.1016/0278- 2626(91)90074-I
  124. Holmes, K. J., & Lourenco, S. F. (2011). Horizontal Trumps Vertical in the Spatial Organization of Numerical Magnitude. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 2276-2281). Austin, TX: Cognitive Science Society.
  125. Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced gamma-Band Activity during the Delay of a Visual Short-Term Memory Task in Humans. The Journal of Neuroscience, 18(11), 4244-4254.
  126. McCarthy, G., Luby, M., Gore, J., & Goldman-Rakic, P. (1997). Infrequent Events Transiently Activate Human Prefrontal and Parietal Cortex as Measured by Functional MRI. Journal of Neurophysiology, 77(3), 1630-1634.
  127. Hopf, J.-M., Vogel, E., Woodman, G., Heinze, H.-J., & Luck, S. J. (2002). Localizing Visual Discrimination Processes in Time and Space. Journal of Neurophysiology, 88(4), 2088-2095.
  128. Winter, B., & Matlock, T. (2013). More is up… and right: Random number generation along two axes. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 3789-3974). Austin, TX: Cognitive Science Society.
  129. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A.-S., McNamara, J. O., & Williams, S. M. (2004). Neuroscience (3rd Ed.). Sunderland, Massachusetts, United States of America: Sinauer Associates, Inc.
  130. Santiago, J., & Lakens, D. (2013). Polarity correspondence does not explain the SNARC effect. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachmuz (Eds.), Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 1259-1264). Austin, TX: Cognitive Science Society.
  131. Piazza, M., Giacomini, E., Le Bihan, D., & Dehaene, S. (2003). Single-trial classification of parallel pre-attentive and serial attentive processes using functional magnetic
  132. Vesia, M., & Crawford, J. D. (2012). Specialization of reach function in human posterior parietal cortex. Experimental Brain Research, 221(1), 1-18. doi:10.1007/s00221-012- 3158-9
  133. Mandler, G., & Shebo, B. J. (1982). Subitizing: An Analysis of Its Component Processes. Journal of Experimental Psychology: General, 111(1), 1-22. doi:10.1037/0096- 3445.111.1.1
  134. Leigh, R. J., & Zee, D. S. (2006). The Neurology of Eye Movements. (4th Ed.). New York, New York, United States of America: Oxford University Press.
  135. Huang, W.-J., Chen, W.-W., & Zhang, X. (2015). The neurophysiology of P 300 - an integrated review. European Review for Medical and Pharmacological Sciences, 19(8), 1480-1488.
  136. Seno, T., Taya, S., Yamada, Y., Ihaya, K., Ito, H., & Sunago, S. (2012). Vection (self-motion perception) alters cognitive states, cognition of time, mental number line and personality. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.), Proceedings of the Cognitive Science Society (pp. 2306-2309). Austin, TX: Cognitive Science Society.

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten