Publikationsserver der Universitätsbibliothek Marburg

Titel:Structural Characterization of the Heterobactin Siderophores from Rhodococcuserythropolis PR4 and Elucidation of their Biosynthetic Machinery
Autor:Zeyadi, Mustafa
Weitere Beteiligte: Marahiel, Mohamed A. (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0416
URN: urn:nbn:de:hebis:04-z2015-04168
DOI: https://doi.org/10.17192/z2015.0416
DDC:540 Chemie
Titel (trans.):Strukturelle Charakterisierung des Heterobactin Siderophors aus Rhodococcuserythropolis PR4 und Untersuchung seiner biosynthetischen Maschinerie
Publikationsdatum:2015-12-23
Lizenz:https://creativecommons.org/licenses/by-nc-nd/4.0/

Dokument

Schlagwörter:
Hydroxylation, Eisen, Siderophore, Hydroxylierung, Rhodococcus, Biosynthese, Rhodococcus, Biosynthesis, Siderophores, Iron

Summary:
Summary The genus Rhodococcus belong to the order actinomycetes, which are gram-positive bacteria with high GC content. They produce a broad range of bioactive secondary metabolites that found use in the pharmaceutical industry and in other biotechnological applications. Most of these bioactive metabolites were derived from nonribosomal peptides (NRP) or polyketides (PK). However, only few natural products have been isolated and characterized so far. In particular, within the Rhodococcus genus, substantial chemical diversity has been observed among the iron-chelating siderophores through the structure elucidation of rhodochelin, rhodobactin and heterobactin A1. Therefore this work was focused on isolation and structural characterization of further new iron-chelating molecules to explore the possible chemical potential of this genus on secondary metabolite production. In this study we accomplished the isolation, the structural characterization and the elucidation of the biosynthetic origin of heterobactins, a catecholate-hydroxamate mixed-type siderophores from Rhodococcus erythropolis PR4. The structure elucidation of the extracted and purified siderophore heterobactin A was accomplished via MSn analysis and NMR spectroscopy and revealed the noteworthy presence of a peptide bond between the guanidine group of an arginine residue and a 2,3- dihydroxybenzoate moiety. The two other purified siderophores heterobactin S1 and S2 were found to be derivatives of heterobactin A that have sulfonation modifications on the aromatic rings. The bioinformatic analysis of the R. erythropolis PR4 genome and the subsequent genetic and biochemical characterization of the putative biosynthetic machinery identified the gene cluster responsible for the biosynthesis of the heterobactins to encode the three modules comprising nonribosomal peptide synthetase (NRPS) HtbG. Interestingly, the HtbG NRPS contains an unprecedented C-PCP-A domain organization within the second module of the HtbG-synthetase that may help the correct elongation of the peptide intermediate. The present work also revises the structure of heterobactin A that was described by Carrano et al. in 2001. Also, the biochemical characterization of the monooxygenase HMO (encoded by the hmo gene within the gene cluster) established a route for the biosynthesis of the non- proteinogenic amino acid L-hOrn, prior to its incorporation by the NRPS HtbG into the siderophore scaffold. The insights gained from the structural and biochemical characterization of the siderophore heterobactins, together with the genetic and biochemical characterization of the respective biosynthetic gene clusters, allowed us to establish a biosynthetic model for heterobactins assembly. The iron-siderophore binding protein HtbH (encoded by htbH gene within the gene cluster) was also biochemically characterized and was shown to display a novel mix-type catecholate-hydroxamate binding behavior.

Bibliographie / References

  1. Mitani Y, Watanabe T, Kondo K, Tamura T. Identification of Strain-specific genes in Rhodococcus erythropolis using a modified HiCEP method. Open Biotechnol J. 2007;1:66-71.
  2. Müller A, Wilkinson AJ, Wilson KS, Duhme-Klair AK. An [{Fe(mecam)}2]6-bridge in the crystal structure of a ferric enterobactin binding protein. Angew Chemie -Int Ed. 2006;45(31):5132-5136. doi:10.1002/anie.200601198.
  3. Banerjee a., Sharma R, Banerjee UC. The nitrile-degrading enzymes: Current status and future prospects. Appl Microbiol Biotechnol. 2003;60(1-2):33-44. doi:10.1007/s00253-002-1062-0.
  4. Bhushan R, Brückner H. Marfey's reagent for chiral amino acid analysis: A review. Amino Acids. 2004;27(3-4):231-247. doi:10.1007/s00726-004-0118-0.
  5. Dhungana S, Michalczyk R, Boukhalfa H, et al. Purification and characterization of rhodobactin: A mixed ligand siderophore from Rhodococcus rhodochrous strain OFS. BioMetals. 2007;20(6):853-867. doi:10.1007/s10534-006-9079-y.
  6. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-254. doi:10.1016/0003-2697(76)90527-3.
  7. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160(1):47-56. doi:10.1016/0003-2697(87)90612-9.
  8. Von Heijne G. Membrane protein structure prediction. J Mol Biol. 1992;225(2):487-494. doi:10.1016/0022-2836(92)90934-C.
  9. Pridmore RD. New and versatile cloning vectors with kanamycin-resistance marker. Gene. 1987;56(2-3):309-312. doi:10.1016/0378-1119(87)90149-1.
  10. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi- purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69-73. doi:10.1016/0378-1119(94)90324-7.
  11. Olmo CH del, Santos VE, Alcon A, Garcia-Ochoa F. Production of a Rhodococcus erythropolis IGTS8 biocatalyst for DBT biodesulfurization: influence of operational conditions. Biochem Eng J. 2005;22(3):229-237. doi:10.1016/j.bej.2004.09.015.
  12. Peuckert F, Ramos-Vega AL, Miethke M, et al. The siderophore binding protein FeuA shows limited promiscuity toward exogenous triscatecholates. Chem Biol. 2011;18(7):907-919. doi:10.1016/j.chembiol.2011.05.006.
  13. Miethke M, Kraushaar T, Marahiel M. A. Uptake of xenosiderophores in Bacillus subtilis occurs with high affinity and enhances the folding stabilities of substrate binding proteins. FEBS Lett. 2013;587(2):206-213. doi:10.1016/j.febslet.2012.11.027.
  14. Van der Geize R, Dijkhuizen L. Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol. 2004;7(3):255-261. doi:10.1016/j.mib.2004.04.001.
  15. Linne U, Marahiel M. A. Reactions catalyzed by mature and recombinant nonribosomal peptide synthetases. Methods Enzymol. 2004;388:293-315. doi:10.1016/S0076-6879(04)88024-8.
  16. Van Der Geize R, Hessels GI, Van Gerwen R, Van Der Meijden P, Dijkhuizen L. Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Δ1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol Lett. 2001;205(2):197-202. doi:10.1016/S0378-1097(01)00464-5.
  17. Loomis LD, Raymond KN. Solution Equilibria of Enterobactin and Metal-Enterobactin Complexes. Inorg Chem. 1991;30(1):906-911. doi:10.1021/ic00005a008.
  18. Abergel RJ, Zawadzka AM, Hoette TM, Raymond KN. Enzymatic hydrolysis of trilactone siderophores: Where chiral recognition occurs in enterobactin and bacillibactin iron transport. J Am Chem Soc. 2009;131(35):12682-12692. doi:10.1021/ja903051q.
  19. Koenig T, Menze BH, Kirchner M, et al. Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res. 2008;7(9):3708-3717. doi:10.1021/pr700859x.
  20. Carrano CJ, Jordan M, Drechsel H, Schmid DG, Winkelmann G. Heterobactins: A new class of siderophores from Rhodococcus erythropolis IGTS8 containing both hydroxamate and catecholate donor groups. BioMetals. 2001;14(2):119-125. doi:10.1023/A:1016633529461.
  21. Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7(539). doi:10.1038/msb.2011.75. References 107
  22. Simon R, Priefer U, Pühler a. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Bio/Technology. 1983;1(9):784-791. doi:10.1038/nbt1183-784. References 105
  23. Caboche S. Bioinformatics bolster a renaissance. Nat Publ Gr. 2014;10(10):798-800. doi:10.1038/nchembio.1634.
  24. Zawadzka AM, Kim Y, Maltseva N, et al. Characterization of a Bacillus subtilis transporter for petrobactin, an anthrax stealth siderophore. Proc Natl Acad Sci U S A. 2009;106(51):21854- 21859. doi:10.1073/pnas.0904793106.
  25. Grigg JC, Cooper JD, Cheung J, Heinrichs DE, Murphy MEP. The Staphylococcus aureus siderophore receptor HtsA undergoes localized conformational changes to enclose staphyloferrin a in an arginine-rich binding pocket. J Biol Chem. 2010;285(15):11162-11171. doi:10.1074/jbc.M109.097865.
  26. Olucha J, Meneely KM, Chilton AS, Lamb AL. Two structures of an N-hydroxylating flavoprotein monooxygenase: Ornithine hydroxylase from Pseudomonas aeruginosa. J Biol Chem. 2011;286(36):31789-31798. doi:10.1074/jbc.M111.265876.
  27. Chu BCH, Otten R, Krewulak KD, Mulder F a. a., Vogel HJ. The Solution Structure, Binding Properties, and Dynamics of the Bacterial Siderophore-binding Protein FepB. J Biol Chem. 2014;289(42):29219-29234. doi:10.1074/jbc.M114.564021.
  28. Sebulsky MT, Shilton BH, Speziali CD, Heinrichs DE. The role of FhuD2 in iron(III)- hydroxamate transport in Staphylococcus aureus: Demonstration that FhuD2 binds iron(III)- hydroxamates but with minimal conformational change and implication of mutations on transport. J Biol Chem. 2003;278(50):49890-49900. doi:10.1074/jbc.M305073200.
  29. Röttig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O. NRPSpredictor2 -A web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 2011;39(SUPPL. 2):1-6. doi:10.1093/nar/gkr323.
  30. Medema MH, Blin K, Cimermancic P, et al. AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011;39(SUPPL. 2):339-346. doi:10.1093/nar/gkr466.
  31. Sitthisak S, Knutsson L, Webb JW, Jayaswal RK. Molecular characterization of the copper transport system in Staphylococcus aureus. Microbiology. 2007;153(Pt 12):4274-4283. doi:10.1099/mic.0.2007/009860-0.
  32. Jin B, Newton SMC, Shao Y, Jiang X, Charbit A, Klebba PE. Iron acquisition systems for ferric hydroxamates , haemin and haemoglobin in Listeria monocytogenes. 2006;59(December 2005):1185-1198. doi:10.1111/j.1365-2958.2005.05015.x.
  33. Miethke M, Skerra A. Neutrophil gelatinase-associated lipocalin expresses antimicrobial activity by interfering with L-norepinephrine-mediated bacterial iron acquisition. Antimicrob Agents Chemother. 2010;54(4):1580-1589. doi:10.1128/AAC.01158-09.
  34. Miranda-CasoLuengo R, Coulson GB, Miranda-CasoLuengo A, Vázquez-Boland J a., Hondalus MK, Meijer WG. The hydroxamate siderophore rhequichelin is required for virulence of the pathogenic actinomycete Rhodococcus equi. Infect Immun. 2012;80(12):4106- 4114. doi:10.1128/IAI.00678-12.
  35. Miranda-CasoLuengo R, Prescott JF, Vázquez-Boland J a., Meijer WG. The intracellular pathogen Rhodococcus equi produces a catecholate siderophore required for saprophytic growth. J Bacteriol. 2008;190(5):1631-1637. doi:10.1128/JB.01570-07.
  36. Sebulsky MT, Heinrichs DE. Identification and Characterization of fhuD1 and fhuD2, Two Genes Involved in Iron-Hydroxamate Uptake in Staphylococcus aureus. J Bacteriol. 2001;183(17):4994-5000. doi:10.1128/JB.183.17.4994.
  37. Chu BCH, Vogel HJ. A structural and functional analysis of type III periplasmic and substrate binding proteins: their role in bacterial siderophore and heme transport. Biol Chem. 2011;392(1-2):39-52. doi:10.1515/BC.2011.012.
  38. Winkelmann G, Drechsel H. Microbial siderophores. Biotechnol Set, Second Ed. 2008:199- 246.
  39. Gehring AM, Mori I, Perry RD, Walsh CT. The Nonribosomal Peptide Synthetase HMWP2 Forms a Thiazoline Ring during Biogenesis of Yersiniabactin, an Iron-Chelating Virulence Factor of Yersinia pestis. Biochemistry. 1998;37(33):11637-11650.
  40. Rausch C, Weber T, Kohlbacher O, Wohlleben W, Huson DH. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 2005;33(18):5799-5808.
  41. Santi D V., Webster RW, Cleland WW. [49] Kinetics of aminoacyl-tRNA synthetases catalyzed ATP-PPi exchange. Methods Enzymol. 1974;29(C):620-627.
  42. Kagawa Y, Mitani Y, Yun H-Y, Nakashima N, Tamura N, Tamura T. Identification of a methanol-inducible promoter from Rhodococcus erythropolis PR4 and its use as an expression vector. J Biosci Bioeng. 2012;113(5):596-603.
  43. Socicly A, Schafer A, Kalinowski RN, Simon R. ·High-Frequency Conjugal Plasmid Transfer froIn Dram-Negative Escherichia coli to Various Gram-Positive CoryneforIn Bacteria. 1990:1663-1666.
  44. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis. 1999;20(18):3551-3567.doi:10.1002/(sici)1522-2683(19991201)20:18<3551::aid- elps3551>3.0.co;2-2.
  45. Schneider R, Hantke K. Iron-hydroxamate uptake systems in Bacillus subtilis: identification of a lipoprotein as part of a binding protein-dependent transport system. Mol Microbiol. 1993;8(1):111-121.
  46. Sekine M, Tanikawa S, Omata S, et al. Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol. 2006;8(2):334-346.
  47. Bosello M, Robbel L, Linne U, Xie X, Marahiel M. A. Biosynthesis of the siderophore rhodochelin requires the coordinated expression of three independent gene clusters in References 104
  48. Zerikly M, Challis GL. Strategies for the discovery of new natural products by genome mining. References 101 References 103
  49. Mazodier P, Petter R a M, Thompson C. Intergeneric conjugation between Escherichia coli and Streptomyces species . Intergeneric Conjugation between Escherichia coli and Streptomyces Species. 1989;171(6):3583-3585.
  50. Elkinst MF, Earhart CF. Nucleotide sequence and regulation of the transport protein FepB . Nucleotide Sequence and Regulation of the Escherichia coli Gene for Ferrienterobactin Transport Protein FepB. 1989;171(10).
  51. Gay P, Le Coq D, Steinmetz M, Berkelman T, Kado CI. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J Bacteriol. 1985;164(2):918-921.
  52. Studier FW, Moffatt BA. Use of bacteriophage T7 RNA polymerase to direct selective high- level expression of cloned genes. J Mol Biol. 1986;189(1):113-130. doi:10.1016/0022- 2836(86)90385-2.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten