Publikationsserver der Universitätsbibliothek Marburg

Titel:Polarized light vision in the eye of the desert locust,Schistocerca gregaria - An electrophysiological and histological approach
Autor:Schmeling, Fabian
Weitere Beteiligte: Homberg, Uwe, (Prof. Dr.)
URN: urn:nbn:de:hebis:04-z2015-03940
DDC: Biowissenschaften, Biologie
Titel (trans.):Polarisationssehen im Auge der Wüstenheuschrecke, Schistocerca gregaria- Ein elektrophysiologischer und histologischer Ansatz


Wüstenheuschrecke, electrophysiology, Elektrophysiologie, Axon, Komplexauge, dorsal rim area, polarisiertes Licht, Photorezeptor, dorsale Randregion, Orientierung, axon

Several studies strongly imply that the desert locust (Schistocerca gregaria) is able to use polarized light patterns in the sky for orientation tasks. A specialized region in its compound eye (DRA) contains photoreceptor cells which are morphologically adapted for the detection of polarized light. This work focuses on the physiological and morphological examination of photoreceptor cells inside and outside the DRA. By applying electrophysiological methods it was tested for spectral, absolute, polarization and angular sensitivity of receptor cells by using electrophysiological methods. Tracer injections revealed projection patterns of the respective cells. In addition data of the solitarious and gregarious phase of the desert locusts were compared.

Bibliographie / References

  1. Roffey J, Popov G (1968) Environmental and behavioral processes in a desert locust outbreak. Nature 219:446-450
  2. Lythgoe JN (1979) The ecology of vision. Clarendon Press, Oxford
  3. Blest AD (1988) The turnover of phototransductive membrane in compound eyes and ocelli.Adv. Insect Physiol. 20:1-53
  4. Anderson H (1978a) Postembryonic development of the visual system of the locust, Schistocerca gregaria I. patterns of growth and developmental interactions in the retina and optic lobe. J. Embryol. Exp. Morph. 45:55-83
  5. Ely SO, Njagi PGN, Bashir MO, El-Amin Slah El-T, Hassanali A (2011) Diel behavioral activity patterns in adult solitarious desert locust, Schistocerca gregaria (Forskål). Psyche(doi:10.1155/2011/459315)
  6. Briscoe AD, Bernard GD, Szeto AS, Nagy LM, White RH (2003) Not all butterfly eyes are created equal: Rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the Retina of Vanessa cardui. J. comp. Neurol. 458:334-349 GENERAL DISCUSSION 76
  7. Williams DS (1982) Ommatidial structure in relation to turnover of photoreceptor membrane in the locust. Cell Tissue Res. 225:595-617
  8. Gogala M (1967) Die spektrale Empfindlichkeit der Doppelaugen von Ascalaphus macaronius Scop. (Neuroptera, Ascalaphidae). Z. vergl. Physiol. 57:232-243
  9. Williams DS (1983) Changes of photoreceptor performance associated with the daily turnover of photoreceptor membrane in locusts. J. comp. Physiol. A 150:509-519
  10. Menzel R (1981) Achromatic vision in the honeybee at low light intensities. J. comp. Physiol. A 141:389-393
  11. von Helversen O, Edrich W (1974) Der Polarisationsempfängerim Bienenauge: ein Ultraviolettrezeptor. J. comp. Physiol. 94:33-47
  12. Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee's compound eye: Polarizational and angular sensitivity. J. comp. Physiol. A 141:19-30
  13. Zolotov V, Frantsevich L Orientation of bees by the polarized light of a limited area of the sky. J. comp. Physiol. 85:25-36
  14. Wildermuth H (1998) Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: a behavioural filed test. Naturwissenschaften 85:297-302
  15. Mappes M, Homberg U (2004) Behavioral analysis of polarization vision in tethered flying locusts. J. comp. Physiol A 190:61-68
  16. Wendt B, Homberg U (1992) Immunocytochemistry of dopamine in the brain of the locust Schistocerca gregaria. J. comp. Neurol. 321:387-403
  17. Symmons P (1992) Strategies to combat the desert locust. Crop Protection 11:206-212
  18. Oba Y, Kainuma T (2009) Diel changes in the expression of long wavelength-sensitive and ultraviolet-sensitive opsin genes in the Japanese firefly, Luciola cruciata. Gene 436:66-70
  19. Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct. Dev. 30:271-280
  20. Horridge GA, McLean M (1978) The dorsal eye of the mayfly Atalophlebia (Ephemeroptera). Proc. R. Soc. B. 200:137-150
  21. White RH, Xu H, Münch TA, Bennett RR, Grable EA (2003) The retina of Manduca sexta: rhodopsin expression, the mosaic of green-, blue and UV-sensitive photoreceptors, and regional specialization. J. exp. Biol. 206:3337-3348
  22. Spaethe J, Briscoe AD (2005) Molecular characterization and expression of the UV opsin in bumblebees: three ommatidial subtypes in the retina and a new photoreceptor organ in the lamina. J. exp. Biol. 208:2347-2361
  23. Yan S, Zhu J, Zhu W, Zhang X, Li Z, Liu X, Zhang Q (2014) The expression of three opsin genes from the compound eye of Helicoverpa armigera (Lepidoptera: Noctuidae) is regulated by a circadian clock, light conditions and nutritional status. PLoS ONE 9:e111683
  24. Heinze S, Reppert SM (2011) Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69:345-358
  25. Osorio D (1986) Ultraviolet sensitivity and spectral opponency in the locust. J. exp. Biol. 122:193-208
  26. Hariyama T, Tsukahara Y (1992) Endogenous rhythms in the amount of 11-cis retinal in the compound eye of Ligia exotica(Crustacea Isopoda). J. exp. Biol. 167:39-46
  27. Johnsen S, Kelber A, Warrant EJ, Sweeney AM, Widder EA, Lee Jr. RL, Hernández- Andrés J (2006) Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. J. exp. Biol. 209:789-800
  28. Henze MJ, Lahart T (2007) Haze, clouds and limited sky visibility: polarotactic orientation of crickets under difficult stimulus conditions. J. exp. Biol. 210:3266-3276
  29. Kinoshita M, Pfeiffer K, Homberg U (2007) Spectral properties of identified polarized-light sensitive interneurons in the brain of the desert locust Schistocerca gregaria. J. exp. Biol. 210:1350-1361
  30. Katti C, Kempler K, Porter ML, Legg A, Gonzales R, Garcia-Rivera E, Dugger D, Battelle B-A (2010) Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock. J. exp. Biol. 213:2589-2601
  31. Schmeling F, Wakakuwa M, Tegtmeier J, Kinoshita M, Bockhorst T, Arikawa K, Homberg U (2014) Opsin expression, physiological characterization and identification of photoreceptor cells in the dorsal rim area and main retina of the desert locust, Schistocerca gregaria. J. exp. Biol. 217:3557-3568
  32. Ruck P (1965) The components of the visual system of a dragonfly. J. gen. Physiol. 49:289-307
  33. Pfeiffer K, Kinoshita M, Homberg U (2005) Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. J. Neurophysiol. 94:3903-3915
  34. Rao YR (1942) Some results of studies on the desert locust (Schistocerca gregaria Forsk.). Bull. Entomol. Res. 33:241-265
  35. Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J. comp. Physiol. A 178:699-709
  36. Nowel MS, Shelton PMJ (1981) A Golgi-electron-microscopical study of the structure and development of the lamina ganglionaris of the locust optic lobe. Cell Tissue Res. 216:377-401
  37. Shaw SR, Fröhlich A, Meinertzhagen IA (1989) Direct connections between the R7/8 and R1-6 photoreceptor subsystems in the dipteran visual system. Cell Tissue Res. 257:295-302
  38. Horridge GA (1969) Unit studies on the retina of dragonflies. Z. vergl. Physiol. 62:1-37
  39. Hamdorf K, Gogala M, Schwemer J (1971) Beschleunigung der Dunkeladaption eines UV-Rezeptors durch sichtbare Strahlung. Z. vergl. Physiol. 75:189-199
  40. Tunstall J, Horridge GA (1967) Electrophysiological investigation of the optics of the locust retina. Z. vergl. Physiol. 55:167-182
  41. Bennett RR(1983) Circadian rhythm of visual sensitivity in Manduca sexta and its development from an ultradian rhythm. J. comp. Physiol. 150:165-174
  42. Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J. comp. Physiol. A 158:1-7
  43. Arikawa K, Kawamata K, Suzuki T, Eguchi E (1987) Daily changes of structure, function and rhodopsin content in the compound eye of the crab Hemigrapsus sanguineus. J. comp. Physiol. A 161:161-174
  44. Hardie RC (1987) Is histamine a neurotransmitter in insect photoreceptors? J. comp. Physiol. A 161:201-213
  45. Herzmann D, Labhart T (1989) Spectral sensitivity and absolute threshold of polarization vision in crickets: a behavioral study. J. comp. Physiol A 165:315-319
  46. Wilson M (1975) Angular sensitivity of light and dark adapted locust retinula cells. J. comp. Physiol. 97:323-328
  47. Wakakuwa M, Kurasawa M, Giurfa M, Arikawa K (2005) Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92:464-467
  48. Stalleicken J, Labhart T, Mouritsen H (2006) Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J. comp. Physiol. A 192:321-331
  49. Cronin TW, Järviletho M, Weckström M, Lall AB (2000) Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J. comp. Physiol A 186:1-12
  50. Blum M, Labhart T (2000) Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye. J. comp. Physiol. A 186:119-128
  51. Gebhardt S, Homberg U (2004) Immunocytochemistry of histamine in the brain of the locust Schistocerca gregaria. Cell Tissue Res. 317:195-205
  52. Homberg U, Brandl C, Clynen E, Schoofs L, Veenstra JA (2004) Mas-allatotropin/Lom- AG-myotropin I immunostaining in the brain of the locust, Schistocerca gregaria. Cell Tissue Res. 318:439-457
  53. el Jundi B, Pfeiffer K, Homberg U (2011) A distinct layer of the medulla integrates sky compass signals in the brain of an insect. PLoS ONE 6:e27855 el Jundi B, Pfeiffer K, Heinze S, Homberg U (2014) Integration of polarization and chromatic cues in the insect sky compass. J. comp. Physiol. A 200:575-589
  54. Eggers A, Weber T (1993) Behavioral evidence for polarization vision in locusts. In: Elsner N, Heisenberg M (eds.) Gene-Brain-Behaviour. Thieme, Stuttgart pp 336
  55. Mazokin-Porshniakov GA (1959) Colorimetric study of vision in dragonflies. Biophysica 4:327-436
  56. Kral K, Stelzl M (1998) Daily visual sensitivity pattern in the green lacewing (Chrysoperla carnea) (Neuroptera: Chrysopidae). Eur. J. Entomol. 95:327-333
  57. Beetz MJ (2013) Electrophysiological and morphological characterization of visually sensitive interneurons of the posterior protocerebrum from the desert locust Schistocerca gregaria. Master thesis, Philipps-University Marburg
  58. Dearborn R Jr, He Q, Kunes S, Dai Y (2002) Eph receptor tyrosine kinase-mediated formation of a topographic map in the Drosophila visual system. J. Neurosci. 22:1338- 1349
  59. Waloff Z (1963) Field studies on solitarious and transient desert locusts in the red sea area. Anti-Locust Bull.40:1–93
  60. Uvarov B (1977) Grasshoppers and locusts. Vol. 2. Centre for overseas pest research, London van Huis A, Cressman K, Magor JI (2007) Preventing desert locust plagues: optimizing management interventions. Entomol. Exp. Appl.122:191-214
  61. Nässel DR (1999) Histamine in the brain of insects: a review. Microsc. Res. Tech. 44:121-136
  62. Steedman A (1988) Locust Handbook. Overseas Development Natural Resources Institute, London
  63. Schmeling F, Tegtmeier J, Kinoshita M, Homberg U (2015) Photoreceptor projections and receptive fields in the dorsal rim area and main retina of the locust eye. J. comp. Physiol. A 201:427-440
  64. Heinze S (2014) Polarized-light processing in insect brains: recent insights from the desert locust, the monarch butterfly, the cricket and the fruit fly. In Horváth G (ed.) Polarized light and polarization vision in animal sciences. 2nd edition. Springer, Heidelberg, New York, Dordrecht, London
  65. Labhart T, Petzold J, Helbling H (2001) Spatial integration in polarization-sensitive interneurons of crickets: A survey of evidence, mechanisms and benefits. J. exp. Biol. 204:2423-2430
  66. Rao YR (1936) The locust incursion of 1935 in North-West India-its significance in the study of the locust problem. Indian J. agr. Sci. 6:1031-1053
  67. Heinze S, Homberg U (2007) Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315:995-997
  68. el Jundi B, Homberg U (2010) Evidence for the possible existence of a second polarization-vision pathway in the locust brain. J. Insect Physiol. 56:971-979
  69. Homberg U, Würden S (1997) Movement-sensitive, polarization-sensitive, and light- sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria. J. comp. Neurol. 386:329-346
  70. Homberg U, Hofer S, Pfeiffer K, Gebhardt S (2003) Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J. comp. Neurol. 462:415-430
  71. Wernitznig S, Rind FC, Pölt P, Zankel A, Pritz E, Kolb D, Bock E, Leitinger G (2014) Synaptic connections of first-stage visual neurons in the locust Schistocerca gregaria extend evolution of tetrad synapses back 200 million years. J. comp. Neurol. 523:298- 312
  72. Beetz MJ, el Jundi B, Heinze S, Homberg U (2015) Topographic organization and possible function of the posterior optictubercles in the brain of the desert locust Schistocerca gregaria. J. comp. Neurol. in press
  73. Lall AB (1993) Nightly increase in visual sensitivity correlated with bioluminescent flashing activity in the firefly Photinus versicolor (Coleoptera: Lampyridae). J. exp.Zool. 265:609-612
  74. Kennedy JS (1951) The migration of the desert locust (Schistocerca gregaria Forsk.). I. Behaviour of swarms. II. A theory of long-range migrations. Phil. Trans. R. Soc. Lond. 235:163-290
  75. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu. Rev. Entomol. 46:471-510
  76. Rao YR (1960) The desert locust in India. Indian Coun. agric. Res. New Delhi Roffey J (1963) Observation on night flight in the desert locust Schistocerca gregaria (Forskål). Anti-Locust Bulletin38:1-32
  77. Symmons PM, Cressman K (2001) Desert locust guidelines 1. Biology and behaviour. Food and Agriculture Organization of the United Nations, Rome
  78. Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J. Neurosci. 22:1114-1125
  79. Draper J (1980) The direction of desert locust migration. J. Animal Ecol. 49:959-974
  80. Hardie RC (1989) A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339:704-706
  81. Shashar N, Sabbah S, Aharoni N (2005) Migrating locusts can detect polarized reflections to avoid flying over the sea. Biol. Lett. 1:472-475
  82. Haskell PT, Paskin MWJ, Moorhouse JE (1962) Laboratory observations on factors affecting the movement of hoppers of the desert locust. J. Insect Physiol. 8:53–78
  83. Showler AT (2002) A summary of control strategies for the desert locust, Schistocerca gregaria (Forskål). Agric. Ecosyst. Environ. 90:97-103
  84. Luo L, Flanagan JG (2007) Development of continuous and discrete neural maps. Neuron 56:284-300
  85. Isono K, Hariyama T, Kito Y, Tsukahara Y (1986) Exogenous and diurnal rhythms of chromophore turnover of visual pigment in the locust analysed by HPLC. Neurosci Res. (Suppl.) 4:S1-S10
  86. Wehner R, Müller M (2006) The significance of direct sunlight and polarized skylight in the ant's celestial system of navigation. Proc. Natl. Acad. Sci. 103:12575-12579

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten