Publikationsserver der Universitätsbibliothek Marburg

Titel:Magnetoreception in Arabidopsis thaliana : Effects of geomagnetic fields on transcription and translation
Autor:Dhiman, Sunil Kumar
Weitere Beteiligte: Galland, Paul (Prof. Dr.)
Veröffentlicht:2015
URI:https://archiv.ub.uni-marburg.de/diss/z2015/0361
URN: urn:nbn:de:hebis:04-z2015-03618
DOI: https://doi.org/10.17192/z2015.0361
DDC:580 Pflanzen (Botanik)
Titel (trans.):Magnetorezeption in Arabiodopsis thaliana
Publikationsdatum:2015-07-15
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Arabidopsis thaliana, Magnetoreception, Magnetorezeption, Arabidopsis thaliana, Ackerschmalwand

Summary:
Very little is known about the effects of geomagnetic fields on plants. The present work was undertaken to answer the question whether plants can perceive the geomagnetic fields (Galland and Pazur 2005). Our findings show that the effects of magnetic fields on various responses in Arabidopsis thaliana result in a characteristic multi-peaked pattern in the stimulus-response curves with multiple maxima (peaks) and minima (valleys). These multi-peaked stimulus-response curves display a unique phenomenon in biology. They are distinctively different from the stimulus-response curves, observed in plant physiology, showing a pattern of rising exponential functions, with a plateau finally. The magnetic response also depended upon the fluence rate of the overhead light, the responses being higher at higher fluence rates. However, the magnetic fields apparently are able to manifest their effects even in darkness. The two double mutants displayed variations in their response to magnetic fields, as compared to Ler seedlings, although the basic pattern of effects remained the same. Additionally the effects were enhanced in phyAphyB double mutants as compared to cry1cry2 double mutants indicating suppression of cryptochrome-mediated magnetic effects by phytochromes. These stimulus-response curves are difficult to explain on the basis of the criteria required by the radical-pair model. The effects of magnetic fields were observed not only in darkness but also in cry1cry2 double mutants. Experiments also revealed responses of the Arabidopsis seedlings to magnetic fields even under red light. Interestingly our data are in good correlation with data obtained by Binhi (2001) while working on DNA of E. coli. They got similar stimulus-response curves with similar peak positions as have been observed by us. Binhi and coworkers explained their observations in the theoretical framework of the “ion-interference mechanism”. A comparison of the effects of magnetic fields of the various organizational levels of Arabidopsis plant, i.e., on hypocotyl length, anthocyanin accumulation, abundance of specific mRNA‟s and proteins reveal maximum effects on gene transcription (12-fold approx.), which were reduced to about 6-fold in case of anthocyanin accumulation and were further reduced to only about 2.5-fold in case of suppression of hypocotyl length by blue light in Arabidopsis. We, therefore state that the effects at transcriptional level get balanced out at higher levels of organization (biochemical pathway, growth response) in order to provide “Magnetohomeostasis”.

Bibliographie / References

  1. Dayal S, Singh RP (1986) Effect of seed exposure to magnetic field on the height of tomato plants. Indian J Agric Sci 56:483–486
  2. Vakharia DN, Davariya RL, Parameswaran M (1991) Influence of magnetic treatment on groundnut yield and yield attributes. Ind. J. Plant Physiol. 34:131–136
  3. König HL, Krueger AP, Lang S, Sönning W (1981) Biological effects of environmental electromagnetism. Springer-Verlag, New York, Heidelberg, Berlin.
  4. Schaefer E, Nagy F (2006) Photomorphogenesis in Plants and Bacteria. Springer, Dordrecht, The Netherlands
  5. Merrill RT, Merrill, McElhinny (1998) The magnetic field of the Earth: paleomagnetism, the core, and the deep mantle. Academic Press Inc., U.S.
  6. Mockler TC, Guo H, Yang H, Duong H, Lin C (1999) Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126:2073–2082
  7. Johnsen S, Lohmann KJ (2008) Magnetoreception in animals. Physics today 29-35
  8. Klar T, Pokorny R, Moldt J, Batschauer A, Essen LO (2007) Cryptochrome 3 from Arabidopsis thaliana: structural and functional analysis of its complex with a folate light antenna. J. Mol. Biol. 366:954–964. (doi:10. 1016/j.jmb.2006.11.066)
  9. Kanai S, Kikuno R, Toh H, Ryo H, Todo T (1997) Molecular evolution of the photolyase- blue-light photoreceptor family. J. Mol. Evol. 45:535–548. (doi:10.1007/ PL00006258)
  10. Va´cha M, Drstkova D, Puzova T. (2008) Tenebrio beetles use magnetic inclination compass. Naturwissenschaften 95:761–765. (doi:10.1007/s00114-008-0377-9)
  11. Yang HQ, Wu YJ, Tang RH, Liu D, Liu Y, Cashmore AR (2000) The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103:815– 827. (doi:10.1016/S0092-8674(00)00184-7)
  12. Malhotra K, Kim ST, Batschauer A, Dawut L, Sancar A (1995) Putative blue-light photoreceptors from Arabidopsis thaliana and Sinapis alba with a high degree of sequence homoloy to DNA photolyase contain the 2 photolyase cofactors but lack DNA-repair activity. Biochemistry 34:6892–6899. (doi:10.1021/bi00020a037)
  13. Kim ST, Heelis PF, Sancar A (1992) Energy transfer (deazaflavin → FADH2) and electron transfer (FADH2 → T < > T) kinetics in Anacystis nidulans photolyase. Biochemistry 31:11244–11248. (doi:10.1021/bi00160a040)
  14. Payne G, Sancar A (1990) Absolute action spectrum of E-FADH 2 and E-FADH 2 -MTHF forms of Escherichia coli DNA photolyase. Biochemistry 29:7715–7727. (doi:10.1021/bi00485a021)
  15. Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang RP, Todo T, Wei YF, Sancar A (1996) Putative human blue-light photoreceptors hCRY1and hCRY2 are flavoproteins. Biochemistry 35:13871–13877. (doi:10.1021/bi962209o)
  16. Gegear RJ, Casselman A, Waddell S, Reppert SM (2008) Cryptochrome mediate light dependent magnetosensitivity in Drosophila. Nature 454:367–550. (doi:10.1038/ nature07183)
  17. Quirin S (2005) Solar wind hammers the ozone layer. Nature doi:10.1038/news050228-12
  18. Johnsen S, Lohmann KJ (2005) The physics and neurobiology of magnetoreception. Nat. Rev. Neurosci. 6:703–712. (doi:10.1038/nrn1745)
  19. Miyamoto Y, Sancar A (1998) Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc. Natl. Acad. Sci. USA 95:6097–6102. (doi:10.1073/pnas.95.11.6097)
  20. Cain SD, Boles LC, Wang JH, Lohmann KJ (2005) Magnetic orientation and navigation in marine turtles, lobsters and molluscs: concepts and conundrums. Integr. Comput. Biol. 45:539–546. (doi:10.1093/icb/45.3.539)
  21. Liedvogel M, Mouritsen H (2010) Cryptochromes – a potential magnetoreceptor: what do we know and what do we want to know? R. Soc. Interface 7:147–S162 (doi:10.1098/ rsif.2009.0411.focus)
  22. Harris SR, Henbest KB, Maeda K, Pannel JR, Timmel CR, Hore PJ, Okamoto H (2009) Effect of magnetic fields on cryptochrome dependent responses in Arabidopsis thaliana. J. R. Soc. Interface 6:1196-1205. (doi:10.1098/rsif.2008.0519)
  23. Phillips JB, Jorge PE, Muheim R (2010) Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms J. R. Soc. Interface 7:241–256 (doi: 10.1098/rsif.2009.0459.focus)
  24. El-Din El-Assal S, Alonso-Blanco C, Peeters AJM, Wagemaker C, Weller JL, Koornneef M (2003) The role of cryptochrome 2 in flowering in Arabidopsis. Plant Physiol. 133:1504–1516. (doi:10.1104/pp.103. 029819)
  25. Jiao Y et al. (2003) A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol. 133:1480–1493. (doi:10.1104/pp.103.029439)
  26. Busza A, Emery-Le M, Rosbash M, Emery P (2004) Roles of the two Drosophila cryptochrome structural domains in circadian photoreception. Science 204:1503– 1506. (doi:10.1126/science.1096973)
  27. Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765. (doi:10.1126/science.284.5415.760)
  28. Park HW, Kim ST, Sancar A, Deisenhofer J (1995) Crystal structure of DNA photolyase from Escherichia coli. Science 268:1866–1872. (doi:10.1126/science.7604260)
  29. Lin C, Shalitin D (2003) Cryptochrome structure and signal transduction. Annu. Rev. Plant Biol. 54:469–496. (doi:10.1146/annurev.arplant.54.110901.160901)
  30. Oliveriusová L, Nemec P, Králová Z, Sedlácekn F (2012) Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference. The Journal of Experimental Biology 215: 3649-3654. (doi:10.1242/jeb.069625)
  31. Zhu H, Sauman I, Yuan Q, Casselman A, Emery-Le M, Emery P, Reppert SM (2008) Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol. 6(1): e4. (doi:10.1371/journal.pbio.0060004) Curriculum Vitae Name: Sunil Kumar Dhiman Date of Birth: 02.06.1971
  32. Yoshii T, Ahmad M, Helfrich-Föster C (2009) Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock. PLoS Biol. 7, e1000086. (doi:10.1371/journal.pbio.1000086)
  33. Liedvogel M, Maeda K, Henbest KB, Schleicher E, Simon T, Timmel CR, Hore PJ, Mouritsen H. (2007a) Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs. PLoS ONE 2(10): e1106. (doi:10.1371/journal.pone.0001106)
  34. Solov " yov IA, Chandler DE, Schulten K (2007) Magnetic field effects in Arabidopsis thaliana cryptochrome 1. Biophys. J. 92:2711–2726. (doi:10.1529/ biophysj.106.097139)
  35. Gao W, Liu Y, Zhou J, Pan H (2005) Effects of a strong magnetic field on bacterium Shewanella oneidensis: An assessment by using whole genome microarray. Bioelectromagnetics 26:558–563
  36. Mohr H (1994) Coaction between pigment systems. In Photomorphogenesis in Plants (Kendrick RE, Kronenberg GHM eds.). Dordrecht: Kluwer Academic Publishers. 353–373
  37. Cremer-Bartels G, Krause K, Mitoskas G, Brodersen D (1984) Magnetic fields of the earth as additional Zeitgeber for endogenous rhythms? Naturwissenschaften 71:567–574
  38. Möller A, Sagasser S, Wiltschko W, Schierwater B (2004) Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91:585–588
  39. Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. A. 191:675–693. (doi:10.1007/s00359-005-0627- 7)
  40. Miller JA, Serio GF, Howard RA, Bear JL, Evans JE, Kimball AP (1979) Subunit localizations of zinc (II) in DNA-dependent RNA polymerase from Escherichia coli B. Biochim. Biophys. Acta 579:291–297
  41. Walleczek J (1995) Magnetokinetic effects on radical pairs: a paradigm for magnetic field interactions with biological systems at lower than thermal energy. Adv. Chem. 250:395–420
  42. Hennig L, Funk M, Whitelam GC, Schafer E (1999) Functional interaction of cryptochrome 1 and phytochrome D. Plant J. 20:289–294
  43. Schulten K, Swenberg CE, Weller A (1978) A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Phys. Chem. NF 111:1–5
  44. Casal JJ (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem. Photobiol. 71:1–11
  45. Gajdardziska-Josifovska M, McClean RG, Schofield MA, Sommer CV, Kean WF (2001) Discovery of nanocrystalline botanical magnetite. Eur. J. Mineral 13:863–870
  46. McClean RG, Schofield MA, Kean WF, Sommer CV, Robertson DP, Toth D, Gajdardziska- Josifovska M (2001) Botanical iron minerals: correlation between nanocrystal structure and modes of biological self-assembly. Eur. J. Mineral 13:1235–1242
  47. Pittman UJ (1963a) Effects of magnetism on seedling growth of cereal plants. Biomedical Sci. Inst. 1:117–122
  48. Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc. Nat. Acad. Sci. USA 101:14294–14299
  49. Murray RW (1962) The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation. J. Exp. Biol. 39:119–128
  50. Hirai T, Yoneda Y (2005) Transcriptional regulation of neuronal genes and its effect on neural functions: gene expression in response to static magnetism in cultured rat hippocampal neurons. J. Pharmacol. Sci. 98:219–224
  51. Gajdardziska-Josifovska M, Schofield MA, Robertson D, McClean R, Kean WF, Sommer C (2002) Botanical iron biominerals: electron diffraction and microscopy identification. Microsc Microanal 8:752–753
  52. Whitelam G, Halliday K (2007) Light and Plant Development. Blackwell Publishing, Oxford.
  53. Liboff AR (1985) Geomagnetic cyclotron resonance in living cells. Bio. Phys. 9:99–102
  54. Stanewsky R (2002) Clock mechanisms in Drosophila. Cell Tissue Res. 309:11–26.
  55. Galland, P and Pazur A (2005) Magnetoreception in plants: J. Plant Res. 118:371–389
  56. Novitsky YI, Novitskaya GV, Kocheshova TK, Nechiporenko GA, Dobrovol " skii MV (2001) Growth of green onions in a weak permanent magnetic field. Russ. J. Plant Physiol. 48:709–715
  57. Nanush " yan ER, Murashev VV (2003) Induction of multinuclear cells in the apical meristems of Allium cepa by geomagnetic field outrages. R. J. Plant Physiol. 50:522–526
  58. Rosen AD (2003) Mechanism of action of moderate-intensity static magnetic fields on biological systems. Cell Biochem. Biophys. 39:163–174
  59. Frankel RB (1990) Iron biominerals: an overview. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum, New York. 1–6
  60. Cook ES, Smith MJ (1964) Increase of trypsin activity. In: Barnothy MF (ed) Biological effects of magnetic fields. Plenum, New York. 246–254
  61. Additional Duties: Being members of Sports and Garden Committees at Kirori Mal College, Delhi University, I have worked for the betterment of the Cricket and Badminton as well as the Garden at the College. I have also been Staff Advisor to the Botanical Society, Conferences and Workshops
  62. Kirschvink JL, Hagadorn JW (2000) A grand unified theory of biomineralization. In: Bäuerlein E (ed) The bio-mineralization of nano and micro-structure. Wiley, Weinheim, 139–150
  63. Fomichjova VM, Zaslavsky VA, Govorun RD, Danilov VI (1992b) Dynamics of RNA and protein synthesis in cells of root meristem of pea, flax and lentil under conditions of shielding the geomagnetic field. Biofizika 37:750–758
  64. Worczak M, Wadelton K, Davis JC, Paul AL, Meisel MW (2007) Effects of high magnetic fields on in vitro transcription. Proceedings of the 2 nd International Workshop on Materials Analysis and proceedings in Magnetic Fields (Grenoble, France) eds.
  65. Halpern MH (1966) Effects of reproducible magnetic fields on the growth of cells in culture. NASDA CR-75121. Natl Astronaut Space Administration, Washington DC.
  66. Kalmijn AJ (1978) Electric and magnetic sensory world of sharks, skates, and rays. In: Hodgson FS, Mathewson RF (eds) Sensory biology of sharks, skates and rays. Office Naval Res, Arlington, VA, 507–528
  67. Participated in 12 th . Gravimeeting 2011 held in Erlangen, Germany on 1-2 December 2011, and gave an oral presentation.
  68. Celestino C, Picazo ML, Toribio M, Alvare-Ude JA, Bardasano JL (1998) Influence of 50 Hz electromagnetic fields on recurrent embryogenesis and germination of cork oak somatic embryos. Plant Cell Tissue Organ Cult. 54:65–69
  69. Govorun RD, Danilov, Fomichjova VM, Beljavskaja NA, Zinchenko S (1992) Influence of geomagnetic field fluctuations and its shielding on early periods of higher plant germination. Biofizika 37:738–744
  70. Neves M, Glielmo M, Martins JL, Lins U (2003) Interaction of magnetotactic bacteria with flagellated protozoa: induced magnetotaxis. Acta Microsc. 12(B):11–12
  71. Lowenstam HA, Kirschvink JL (1985) Iron biomineralization a geobiological perspective. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum, New York, 3–15
  72. Giovani B, Byrdin M, Ahmad M, Brettel K (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nature Struct. Biol. 6:489–490
  73. Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, Berlin Heidelberg New York Wiltschko R, Wiltschko W (2006) Magnetoreception. BioEssays 28:157–168.
  74. Krylov AV, Tarakanova GA (1960) Magnetotropism of plants and its nature. Plant Physiol. 7:156–160
  75. Ssawostin PW (1930b) Magnetwachstumreaktionen bei Pflanzen. Planta 12:327–330
  76. B.Sc.(1992): Department of Botany, Kirori Mal College, University of Delhi, New Delhi- 110007. India Scholarships-awarded: Junior Research Fellowship in June-1994 conducted jointly by Council for scientific and Industrial Research (CSIR) and University Grant Commission (UGC) New Delhi, India. The Fellowship is awarded for five years.
  77. Professions Undertaken: Since 2000 as Assistant Professor at BS level I have taught in Department of Botany, University of Delhi, K.M.C., University Enclave, New Delhi and continuing even now. From 1996 to 2000 taught as Assistant Professor at BS and MS level in Department of Botany, CCS University, J. V. C., Baraut, UP, India Educational Qualification Doctoral Research: On the topic " Magnetoreception in Arabidopsis thaliana: Effects of geomagnetic fields on transcription and translation " , in AG Prof. Dr. Paul Galland, Faculty of Biology, Philipps-Universität Marburg, Germany.
  78. Palmer JD (1963) Organismic spatial response in very weak spatial magnetic fields. Nature 198:1061–1062
  79. Participated in Plant Biology Congress 2012 held in Freiburg, Germany on July 29- August 3, 2012
  80. Title- " Pre-fertilization Aspects of Embryology in Angiosperm: An Overview M.Sc.(1994): Department of Botany, University of Delhi, New Delhi-110007. India.
  81. Fomichjova VM, Govorun RD, Danilov VI (1992a) Proliferation activity and cell reproduction in meristems of root seedlings of pea, flax and lentil under conditions of shielding the geomagnetic field. Biofizika 37:745–749
  82. Participated in National Workshop on " Recent Techniques in Structural and Functional Genomics " , held at CIMAP, Lucknow, UP, India (Dec 15-24, 2006).
  83. Drobig J (1988) Saatgut im elektrmagnetischen Feld – zu einigen internationalen Untersuchungen. Arch Acker-Pflanzenbau Bodenkd 9:619–626
  84. Franklin KA, Larner VS, Whitelam GC (2005) The signal transducing photoreceptors of plants. Int. J. Dev. Biol. 49:653–664
  85. Lin H, Han L, Blank M, Head M, Goodman R (1998) Magnetic field activation of protein- DNA binding. J. Cell. Biochem. 70:297–303
  86. Blank M, Goodman R (1999) Electromagnetic fields may act directly on DNA. J. Cell Biochem. 75:369–374
  87. Liboff AR (1997) Electric field ion cyclotron resonance. Bioelectromagnetics 18:85–87
  88. Blank M, Goodman R (1997) Do electromagnetic fields interact directly with DNA? Bioelectromagnetics 18:111–115
  89. Zhadin MN, Novikov VV, Barnes FS, Pergola NF (1998) Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics 19:41–45
  90. Del Giudice E, Fleischmann M, Preparata G, Talpo G (2002) On the " unreasonable " effects of ELF magnetic fileds upon a system of ions. Bioelectromagnetics 23:522–530
  91. Liboff AR, Cherng S, Jenrow KA, Bull A (2003) Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 μT magnetostatic fields. Bioelectromagnetics 24:2–38
  92. Portaccio M, De Luca P, Durante D, Grano V, Rossi S, Bencivenga U, Lepore M, Mita DG (2005) Modulation of the catalytic activity of free and immobilized peroxydase by extremely low frequency electromagnetic fields: dependence on frequency. Bioelectromagnetics 26:145–152
  93. Sample preparation and protein quantification………………………… Blackman CF, Benane SG, Rabinowitz JR, House DE, Jones WT (1985) A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6:327–333
  94. Smith S (1987) Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics 8:215–227
  95. Durney CH, Rushforth CK, Anderson AA (1988) Resonant AC-DC magnetic fields: calculated response. Bioelectromagnetics 9:315–336
  96. Sandweiss J (1990) On the cyclotron resonance model of ion transport. Bioelectromagnetics 11:203–205
  97. Lednev VV (1991) Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12:71–75
  98. Nossol B, Buse G, Silny J (1993) Influence of weak static and 50 Hz magnetic fields on the redox activity of cytochrome-C oxidase. Bioelectromagnetics 14:361–372
  99. Blanchard JP, Blackman CP (1994) Clarification and amplification of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15:217–238
  100. García-Reina F, Arza-Pascual L (2001) Influence of a stationary magnetic field on water relations in lettuce seeds. I: theoretical considerations. Bioelectromagnetics 22:589–595
  101. Shimizu E, Matsuda-Honjyo Y, Samoto H, Saito R, Nakajima Y, Nakayama Y, Kato N, Yamazaki M, Ogata Y (2004) Static magnetic fields-induced bone sialoprotein (BSP) expression is mediated through FGF2 response element and pituitary- specific transcription factor-1 motif. J. Cell. Biochem. 91:118–1196
  102. Lin H, Goodman R, Shirley-Henderson (1994) Specific region of the c-myc promotor is responsive to electric and magnetic fields. J. Cell. Biochem. 54:281–288
  103. Blank M, Goodman R (2008) A mechanism for stimulation of biosynthesis by electromagnetic fields: charge transfer in DNA and base pair separation. J. Cell Physiology 214(1):20–26
  104. Mathews S, Sharrock RA (1997) Phytochrome gene diversity. Plant Cell Environ. 20:666– 671
  105. Wiltschko W (1968) Uber den Einfluss statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Z. Tierpsychol. 25:537–558.
  106. Scaiano JC, Cozens FL, McLean J (1994) Model for the rationalization of magnetic field effects in vivo. Application of the radical-pair mechanism to biological systems. Photochem. Photobiol. 59:585–589
  107. Nodwell LM, Price NM (2001) Direct use of inorganic colloidal iron by marine mixotrophic phytoplankton. Limnol. Oceanogr. 46:765–777
  108. Kato R (1990) Effects of very low magnetic field on the gravitropic curvature of Zea roots. Plant Cell Physiol. 31:565–568
  109. Kato R (1988) Effects of a magnetic field on the growth of primary roots of Zea mays. Plant Cell Physiol. 29:1215–1219
  110. Kato R, Kamada H, Asashima M (1989) Effects of high and low magnetic fields on the growth of hairy roots of Daucus carota and Atropa belladonna. Plant Cell Physiol. 30:605–608
  111. Usami T, Mochizuki N, Kondo M, Nishimura M, Nagatani A (2004) Cryptochromes and phytochromes synergistically regulate Arabidopsis root greening under blue light. Plant Cell Physiol. 45:1798–1808
  112. Suh WC, Leirmo S, Record Jr MT (1992) Roles of Mg2 + in the mechanism of formation and dissociation of open complexes between Escherichia coli RNA polymerase and the lambda PR promoter: kinetic evidence for a second open complex requiring Mg2 + . Biochemistry 31:7815–7825
  113. Stivers JT, Harris TK, Mildvan AS (1997) Vaccinia DNA topoisomerase I: evidence supporting a free rotation mechanism for DNA supercoil relaxation. Biochemistry 36:5212–5222.
  114. Grissom CB (1995) Magnetic field effects in biology: a survey of possible mechanisms with emphasis on radical-pair recombination. Chem. Rev. 95:3–24
  115. Buchachenko AL, Kuznetsov DA (2008) Magnetic field affects enzymatic ATP synthesis. J. Am. Chem. Soc. 130:12868–12869
  116. Pittman UJ (1963b) Magnetism and plant growth. I. Effects on germination and early growth of cereal seeds. Can. J. Plant Sci. 43:513–51
  117. Pittman UJ (1964) Magnetism and plant growth. II. Effects on root growth of cereals. Can. J. Plant Sci. 44:283–287
  118. Kobayashi AK, Kirschvink JL, Nesson MH (1995) Ferromagnetism and EMFs. Nature 374:123
  119. Imimoto M, Watanabe K, Fujiwara K (1996) Effects of magnetic flux density and direction of the magnetic field on growth and CO 2 exchange rate of potato plantlets in vitro. In: Kozai T (ed) Proceeding of the international symposium on plant production in closed ecosystem. Narita, Japan
  120. Zhadin MN (2001) Review of Russian literature on biological action of DC and low- frequency AC magnetic fields. Bioelectromagnetics 22:27–45
  121. Brown FA Jr, Chow CS (1975) Non-equivalence for bean seeds of clockwise and counterclockwise magnetic motion: a novel terrestrial adaptation? Biol Bull 148:370–379
  122. Pazur A and Rassadina V (2009) Transient effect of weak electromagnetic fields on calcium ion concentration in Arabidopsis thaliana. Bmc Plant Biology 9:47
  123. Pazur A (2004) Characterization of weak magnetic field effects in an aqueous glutamic acid solution by nonlinear dielectric spectroscopy and voltametry. Biomagn. Res .Technol. 2:8–19
  124. Schulten K, Staerk H, Weller A, Werner HJ, Nickel B (1976) Magnetic field dependence of the geminate recombination of radical ion pairs in polar solvents. Z. Phys. Chem. NF 101:371–390
  125. Hughes RM, Vrana JD, Song J, Tucker CL (2012) Light-dependent, Dark-promoted interaction between Arabidopsis cryptochrome 1 and phytochromes B proteins. The Journal of Biological Chemistry 287:22165–22172
  126. Jones RL (1960) Response of growing plants to a uniform daily rotation. Nature 185:775
  127. Semm P, Schneider T, Volirath L (1960) Effects of an Earth-strength magnetic field on electrical activity of pineal cells. Nature 288:607–615
  128. Wiltschko W, Wiltschko R (1981) Disorientation of inexperienced young pigeons after transportation in total darkness. Nature 291:433–434
  129. Phillips JB, Borland SC (1992b) Behavioral evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359:142–144
  130. Juárez MT, Tauxe L, Gee JS, Pick T (1998) The intensity of the earth " s magnetic field over the past 160 million years. Nature 394:878–881
  131. Más P, Devlin PF, Panda S, Kay SA (2000) Functional interaction of phytochrome B and cryptochrome 2. Nature 408:207–211
  132. Foley LE, Gegear RJ, Reppert SM (2011) Human cryptochrome exhibits light dependent magnetosensitivity. Nat. Commun. 2:356
  133. Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 8:217–230
  134. Eichwald C, Walleczek J (1996) Model for magnetic field effects on radical pair recombination in enzyme kinetics. Biophys J. 71:623–631
  135. Lin C (2000) Photoreceptors and regulation of flowering time. Plant Physiol. 123:39–50
  136. Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57:837–858
  137. Wajnberg E, Acosta-Avalos D, Cambraia Alves O, Ferreira de Oliveira J, Srygley RB, Esquivel DMS (2010) Magnetoreception in eusocial insects: an update. J. R. Soc. Interface 7:207–225
  138. Cook DN, Ma D, Pon NG, Hearst JE (1992) Dynamics of DNA supercoiling by transcription in Escherichia coli. Proc. Nat. Acad. Sci. USA 89:10603-10607
  139. Yang HQ, Tang, RH Cashmore AR (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13:2573–2587
  140. Endo M, Mochizuki N, Suzuki T, Nagatani A (2007) CRYPTOCHROME2 in vascular bundles regulates flowering in Arabidopsis. Plant Cell 19:84–93
  141. Reed JW, Nagatani A, Elich TD, Fagan M, Chory J (1994) Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 104:1139–1149
  142. Casal JJ, Mazzella MA (1998) Conditional synergism between cryptochrome 1 and phytochromes B is shown by the analysis of phyA, phyB and hy4 single, double and triple mutants in Arabidopsis. Plant Physiol. 118:19–25
  143. Neff MM, Chory J (1998) Genetic interactions between phytochrome A, phytochrome B and cryptochrome 1 during Arabidopsis development. Plant Physiol. 118:27–36
  144. Selby CP, Sancar A (2006) A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity. Proc. Natl. Acad. Sci. USA 103:17696–17700
  145. Pokorny R, Klar T, Hennecke U, Carell T, Batschauer A, Essen LO (2008) Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc. Natl. Acad. Sci. USA 105:21023–21027
  146. Rodgers CT, Hore PJ (2009) Chemical magnetoreception in birds: The radical pair mechanism. Proc. Natl. Acad. Sci. USA. 106:353–360
  147. Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA 89:7683–7687
  148. Shinomura T, Nagatani A, Hanzawa A, Kubota M, Watanabe M et al., (1996) Action spectra for phytochrome A and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93:8129–8133
  149. Heussen C, Nackerdien Z, Smit BJ, Böhm L (1987) Irradiation damage in chromatin isolated from V-79 Chinese hamster lung fibroblasts. Radiat Res. 110:84–94
  150. Rosen AD (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic field. Biochim. Biophys. Acta 1282:149–155
  151. McClean RG, Kean WF (1993) Contributions of wood ash magnetism to archaeomagnetic properties of fire pits and hearths. Earth Planet Sci. Lett. 119:387–394
  152. Smith SD, McLeod BR, Liboff AR (1995) Testing the ion cyclotron resonance theory of electromagnetic field interaction with odd and even harmonic tuning for cations. Bioelectrochem. Bioenerg. 38:161–167
  153. Ritz T, Adem S, Schulten K (2000) A model for vision-based magnetoreception in birds. Biophys. J. 78:707–718
  154. Torres de Araujo FF, Pires MA, Frankel RB, Bicudo CEM (1986) Magnetite and magnetotaxis in algae. Biophys. J. 50:375–378
  155. Chunxiao Xu, Xiao Yin, Yan Lv, Changzhe Wu, Yuxia Zhang, Tao Song (2012) A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis. Advances in Space Research 49:834–840
  156. Negishi Y, Hashimoto A, Tsushima M, Dobrota C, Yamshita M, Nakamura T (1999) Growth of pea epicotyl in low magnetic field: implication for space research. Adv. Space Res. 23:2029–2032
  157. Tuinstra R, Greenebaum B, Goodman EM (1997) Effects of magnetic fields on cell-free transcription in E. coli and Hela extracts. Bioelectrochem. Bioenergitics 43:7-12
  158. Mullins JM, Penafiel LM, Juutilainen J, Litovitz TA (1999) Dose-response of electromagnetic field-enhanced ornithine decarboxylase activity. Bioelectrochem Bioenerg. 48:193–199
  159. Tsuchchiya K, Okuno K, Ano T, Tanaka K, Takahashi H, Shoda M (1999) High magnetic field enhances stationary phase-specific transcription activity of Escherichia coli. Bioelectrochem. Bioenergitics 40:383–387
  160. Gould, J. L., 2008, Animal navigation: the evolution of magnetic orientation. Curr. Biol. 18:482-482
  161. Song SH, Dick B, Penzkofer A, Pokorny R, Batschauer A, Essen O (2006) Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana. J. Photochem. Photobiol. B. 85:1–16
  162. Quail PH (2007b) Phytochrome-regulated gene expression. J. Integr. Plant Biol. 49:11–20
  163. Quail PH (2007a) Phytochrome interacting factors, in Light and Plant Development. (G. Whitelam and K. Halliday eds.). Blackwell Publishing, Oxford. 81–105
  164. Blakemore RP (1982) Magnetotactic bacteria. Annu. Rev. Microbiol. 36:217–238
  165. Lohmann KJ, and Willows AOD (1987) Lunar-modulated geomagnetic orientation by a marine mollusk. Science 235:331–334
  166. Guo HW, Yang WY, Mockler TC, Lin CT (1998) Regulations of flowering time by Arabidopsis photoreceptors. Science 279:1360–1363
  167. Tarduno JA, Cottrell RD, Watkeys MK, Hofmann A, Doubrovine PV, Mamajek EE, Liu D, Sibeck DG, Neukirch LP, Usui Y (2010) Geodynamo, solar wind and magnetopause 3.4 to 3.45 billion years ago. Science 327:1238–1240
  168. Exner V, Alexandre C, Rosenfeldt G, Alfarano P, Nater M, Caflisch A, Gruissem W, Batschauer A, and Hennig L (2010) A gain-of-function mutation of Arabidopsis CRYPTOCHROME1 promotes flowering. Plant Physiology 154:1633–1645


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten