Publikationsserver der Universitätsbibliothek Marburg

Titel:Genetische und biochemische Charakterisierung der Itaconsäure-Biosynthese in Ustilago maydis
Autor:Przybilla, Sandra Kathrin
Weitere Beteiligte: Bölker, Michael (Prof. Dr,)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0414
DOI: https://doi.org/10.17192/z2014.0414
URN: urn:nbn:de:hebis:04-z2014-04141
DDC: Biowissenschaften, Biologie
Titel (trans.):Genetic and biochemical characterization of the itaconic acid biosynthesis in Ustilago maydis
Publikationsdatum:2015-05-04
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
gene cluster, Sekundärmetablismus, Biotechnologie, metabolic engineering, Ustilago zeae, secondary metabolism, Gencluster, bio-based chemical building block, Itaconsäure

Zusammenfassung:
Die ungesättigte Dicarbonsäure Itaconsäure wird durch mikrobielle Fermentation erzeugt und dient als Ausgangsstoff für die Produktion von Kosmetika, Klebstoffen oder sogar Biokraftstoff. Der phytopathogene Basidiomycet Ustilago maydis produziert unter bestimmten Bedingungen eine Vielzahl an Sekundärmetaboliten, zu denen auch die Itaconsäure gehört. Der Biosyntheseweg der Itaconsäure war jedoch in diesem Pilz bisher noch nicht bekannt. In dieser Arbeit wurden die für die Itaconsäure-Biosynthese in U. maydis verantwortlichen Gene identifiziert und charakterisiert. Alle beteiligten Gene sind in einem Gencluster organisiert, der durch den Transkriptionsfaktor Ria1 spezifisch reguliert wird. Anhand von Deletionsanalysen der entsprechenden Gene konnte gezeigt werden, dass in U. maydis zwei Enzyme essentiell für die Synthese von Itaconat sind. Im Verlauf dieser Arbeit wurde die enzymatische Aktivität dieser Enzyme bestimmt. Dabei wurde gezeigt, dass das PrpF-ähnliche Protein Aconitat-Δ-Isomerase (Adi1) die Umwandlung von cis- zu trans-Aconitat und damit den ersten Schritt der Itaconsäure-Biosynthese in U. maydis katalysiert. Der zweite Schritt wird durch das zweite essentielle Enzym trans-Aconitat-Decarboxylase (Tad1) katalysiert, das die Decarboxylierung von trans-Aconitat zu Itaconat vermittelt. Basierend auf diesen Daten konnte ein Modell für den Itaconsäure-Biosyntheseweg in U. maydis aufgestellt werden. Es wird angenommen, dass cis-Aconitat durch den mitochondriellen Transporter Ctp1 vom Mitochondrium ins Cytosol exportiert wird. Dort dient es als Substrat für Adi1, das die Isomerisierung zu trans-Aconitat katalysiert. Trans-Aconitat wird anschließend durch Tad1 zu Itaconat decarboxyliert, das vermutlich durch den Plasmamembran-Transporter Itp1 aus der Zelle transportiert wird. Der Itaconsäure-Gencluster ist während der pathogenen Entwicklung von U. maydis stark exprimiert. In dieser Arbeit konnte jedoch gezeigt werden, dass die Produktion von Itaconsäure während der biotrophen Phase nicht essentiell ist. Damit bleibt die biologische Rolle der Itaconsäure-Produktion für U. maydis weiterhin unklar. Im Verlauf dieser Arbeit wurde noch ein zweiter Gencluster in U. maydis identifiziert, der Ähnlichkeiten zum Itaconat-Gencluster aufweist. Dieser Gencluster enthält ein Gen für eine Aconitat Δ-Isomerase (adi2 ), die in der Lage ist, die Funktion von Adi1 vollständig zu ersetzen. Durch Wachstumstests konnte gezeigt werden, dass der Adi2-Gencluster für die Verstoffwechselung von cis- und trans-Aconitat essentiell ist, das sich auch in der Wirtspflanze Zea mays findet. Die Fähigkeit, trans-Aconitat als Kohlenstoffquelle zu verwenden, ist für U. maydis während der pathogenen Entwicklung möglicherweise von Vorteil, es konnte jedoch gezeigt werden, dass diese Fähigkeit nicht essentiell für die pathogene Entwicklung von U. maydis ist.

Bibliographie / References

  1. Banuett, F. and Herskowitz, I. (1996) Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development, 122, 2965–76.
  2. Baup, S. (1837) Ueber eine neue Pyrogen-Citronensäure und überBenennung der Pyrogen- Säuren überhaupt. Ann. Chim. Phys., 19, 29–38.
  3. Rebholz, K. L. and Northrop, D. B. (1994) Kinetics of Enzymes with Iso-Mechanisms: Dead-End Inhibition of Fumarase and Carbonic Anhydrase II. Archives of Biochemistry and Biophysics, 312, 227–233.
  4. Lauble, H., Kennedy, M. C. and Beinert, H. (1994) Crystal Structures of Aconitase with Trans- Aconitate and Nitrocitrate bound. J. Mol. Biol., 237, 437–451.
  5. Watanabe, K., Katsuhara, M., Nakao, H. and Sato, M. (1997) Detection and molecular analysis of plant-and insect-associated bacteria harboring aconitate isomerase involved in biosynthesis of trans-aconitic acid as antifeedant in brown planthoppers. Current microbiology, 35, 97–102. ISSN 0343-8651.
  6. Thompson, J. F., Schaefer, S. C. and Madison, J. T. (1990) Determination of aconitate isomerase in plants. Analytical biochemistry, 184, 39–47. ISSN 0003-2697.
  7. Velarde, M., Macieira, S., Hilberg, M., Bröker, G., Tu, S.-M., Golding, B. T., Pierik, A. J., Buckel, W. and Messerschmidt, A. (2009) Crystal Structure and Putative Mechanism of 3- Methylitaconate-∆-isomerase from Eubacterium barkeri. Journal of Molecular Biology, 391, 609–620.
  8. Steinberg, G. and Perez-Martin, J. (2008) Ustilago maydis, a new fungal model system for cell biology. Trends Cell Biol, 18, 61–67.
  9. MacLennan, D. H. and Beevers, H. (1964) Trans-Aconitate in plant tissue. Phytochemistry, 3, 109–113.
  10. Klinman, J. P. and Rose, I. A. (1971) Mechanism of the aconitate isomerase reaction. Bioche- mistry, 10, 2259–66. ISSN 0006-2960.
  11. Yang, J., Wang, Y., Woolridge, E. M., Arora, V., Petsko, G. a., Kozarich, J. W. and Ringe, D. (2004) Crystal structure of 3-carboxy-cis,cis-muconate lactonizing enzyme from Pseudomo- nas putida, a fumarase class II type cycloisomerase: enzyme evolution in parallel pathways. Biochemistry, 43, 10424–34. ISSN 0006-2960.
  12. Nelson, G., Traufler, D., Kelley, S. and Lockwood, L. (1952) Production of itaconic acid by Aspergillus terreus in 20-liter fermentors. Ind Eng Chem, 44, 1166–1168.
  13. Keller, N. P., Turner, G. and Bennett, J. W. (2005) Fungal secondary metabolism -from bio- chemistry to genomics. Nature reviews. Microbiology, 3, 937–47. ISSN 1740-1526.
  14. Zheng, Y., Kief, J., Auffarth, K., Farfsing, J. W., Mahlert, M., Nieto, F. and Basse, C. W. (2008) The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzr1 regulates fungal gene expression during the biotrophic growth stage. Molecular microbiology, 68, 1450–70. ISSN 1365-2958.
  15. Nogales, J., Canales, A., Jiménez-Barbero, J., Serra, B., Pingarrón, J. M., García, J. L. and Díaz, E. (2011) Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Molecular microbiology, 79, 359–74. ISSN 1365-2958.
  16. Machowinski, A., Krämer, H.-J., Hort, W. and Mayser, P. (2006) Pityriacitrin–a potent UV filter produced by Malassezia furfur and its effect on human skin microflora. Mycoses, 49, 388–92. ISSN 0933-7407.
  17. Bentley, R. and Thiessen, C. P. (1955) Cis-aconitic Decarboxylase. Science, 122, 330.
  18. Tabuchi, T. and Hara, S. (1974) Production of 2-methylisocitric acid from N-paraffins by mutants of candida-lipolytica. Agric. Biol. Chem., 38, 1105–1106.
  19. Jakubowska J, M. D. (1974) Studies on the metabolic pathway for itatartaric acid formation by Aspergillus terreus. II. Use of (-)citramalate, citraconate and itaconate by cell-free extracts. Acta Microbiol Pol B., 6, 51–61.
  20. Banuett, F. and Herskowitz, I. (1994) Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and -independent steps in the fungal life cycle. Genes Dev, 8, 1367–78.
  21. Lee, J. W., Kim, H. U., Choi, S., Yi, J. and Lee, S. Y. (2011) Microbial production of building block chemicals and polymers. Current opinion in biotechnology, 22, 758–67. ISSN 1879-0429.
  22. Okabe, M., Lies, D., Kanamasa, S. and Park, E. Y. (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl Microbiol Biotechnol, 84, 597–606.
  23. Sasikaran, J., Ziemski, M., Zadora, P. K., Fleig, A. and Berg, I. A. (2014) Bacterial itaconate degradation promotes pathogenicity. Nature Chemical Biology, 10, 371–377.
  24. Bok, J. W., Noordermeer, D., Kale, S. P. and Keller, N. P. (2006) Secondary metabolic gene cluster silencing in Aspergillus nidulans. Molecular microbiology, 61, 1636–45. ISSN 0950- 382X.
  25. Hydroxyparaconic , Itatartaric , and Malic Acids by Strains of the Genus Ustilago. Journal of biological chemistry, 161, 739–742.
  26. Medema, M. H., Blin, K., Cimermancic, P., de Jager, V., Zakrzewski, P., Fischbach, M. a., Weber, T., Takano, E. and Breitling, R. (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic acids research, 39, W339–46. ISSN 1362-4962.
  27. Kinoshita, K. (1932) Über die Produktion von Itaconsäure und Mannit durch einen neuen Schim- melpilz Aspergillus itaconicus. Acta Phytochim.
  28. Lemieux, R., Thorn, J., Brice, C. and Haskins, R. (1951) Biochemistry of the ustilaginales. II. Isolation and partial characterization of ustilagic acid. Can J Chem, 29, 409–414.
  29. Bentley, R. and Thiessen, C. P. (1957) Biosynthesis of itaconic acid in Aspergillus terreus: I . tracer studies with C14-labeled Substrates. The Journal of biological chemistry, 226, 673–678.
  30. Moore, R., Bigam, G., Chan, J., Hogg, A., Nakashima, T. and Vederas, J. (1985) Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus: determination of the origin of carbon, hydrogen and oxygen atoms by carbon-13 NMR and mass spectrometry. J. Am. Chem. Soc., 107, 3694–3701.
  31. Kanamasa, S., Dwiarti, L., Okabe, M. and Park, E. Y. (2008) Cloning and functional characte- rization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Applied microbiology and biotechnology, 80, 223–9. ISSN 0175-7598.
  32. Smith, D., Burnham, M., Edwards, J., Earl, A. and Turner, G. (1990) Cloning and heterologous expression of the penicillin biosynthetic gene cluster from penicillum chrysogenum. Biotech- nology (NY), 8, 39–41.
  33. Southern, E. (1992) Detection of specific sequences among DNA fragments separated by gel electrophoresis. Biotechnology, 24, 122–139.
  34. Sharp, P., Sugden, B. and Sambrook, J. (1973) Detection of two restriction endonuclease activi- ties in Haemophilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis. Biochemistry, 12, 3055–63.
  35. Mingot, J., Peñalva, M. and Fernández-Cañón, J. (1999) Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. J. Biol. Chem., 274, 14545–50.
  36. van der Straat, L., Vernooij, M., Lammers, M., van den Berg, W., Schonewille, T., Cordewener, J., van der Meer, I., Koops, A. and de Graaff, L. H. (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microbial cell factories, 13, 11. ISSN 1475-2859.
  37. Walton, J. D. (2000) Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis. Fungal genetics and biology : FG & B, 30, 167–71. ISSN 1087-1845.
  38. Law, C. J., Maloney, P. C. and Wang, D.-n. (2009) In and outs of Major Facilitator Superfamily Antiporters. Annual review of microbiology, 62, 289–305.
  39. Kim, M., Koh, H., Obata, T., Fukami, H. and Shii, S. I. (1976) Isolation and Identification of trans -aconitic acid as the antifeedant in barnyard grass against the brown planthopper Nilaparvata lugens. Appl. Entomol. Zool., 11, 53–57.
  40. Pfeifer, V., Vojnovich, C. and Heger, E. (1952) Itaconic acid by fermentation with Aspergillus terreus. Ind Eng Chem, 44, 2975–2980.
  41. Kennedy, J. (1999) Modulation of Polyketide Synthase Activity by Accessory Proteins During Lovastatin Biosynthesis. Science, 284, 1368–1372. ISSN 00368075.
  42. Horswill, A. R. and Escalante-Semerena, J. C. (1997) Propionate catabolism in Salmonella ty- phimurium LT2 : two divergently transcribed units comprise the prp locus at 8 . 5 centisomes, prpR encodes a member of the sigma-54 family of activators, and the prpBCDE genes consti- tute an operon . Propionate Catab. Journal of bacteriology, 179, 928.
  43. Shi, L., Adkins, J. N., Coleman, J. R., Schepmoes, A. a., Dohnkova, A., Mottaz, H. M., Norbeck, A. D., Purvine, S. O., Manes, N. P., Smallwood, H. S., Wang, H., Forbes, J., Gros, P., Uzzau, S., Rodland, K. D., Heffron, F., Smith, R. D. and Squier, T. C. (2006) Proteomic analysis of Salmonella enterica serovar typhimurium isolated from RAW 264.7 macrophages: identi- fication of a novel protein that contributes to the replication of serovar typhimurium inside macrophages. The Journal of biological chemistry, 281, 29131–40. ISSN 0021-9258.
  44. Self, A. and Hall, A. (1995) Purification of recombinant Rho/Rac/G25K from Escherichia Coli. Methods Enzymol, 256, 3–10.
  45. Yoshizawa, Y., Witter, D., Liu, Y. and Vederas, J. (1994) Revision of the biosynthetic origin of oxygens in mevinolin (Lovastatin), a hypocholesterolemic drug from Aspergillus terreus MF 4845. J. Am. Chem. Soc., 116, 2693–2694.
  46. Khaldi, N., Seifuddin, F. T., Turner, G., Haft, D., Nierman, W. C., Wolfe, K. H. and Fedorova, N. D. (2010) SMURF: Genomic mapping of fungal secondary metabolite clusters. Fungal genetics and biology : FG & B, 47, 736–41. ISSN 1096-0937.
  47. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G. and Erlich, H. (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol, 51, 263–273.
  48. Tilburn, J. (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acidand alkaline-expressed genes by ambient pH. The EMBO Journal, 14, 779–790.
  49. Walsh, C. T. (2008) The chemical versatility of natural-product assembly lines. Accounts of chemical research, 41, 4–10. ISSN 1520-4898.
  50. Ornston, L. N. and Stanier, R. Y. (1966a) The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. The Journal of biological chemistry, 241, 3776–86.
  51. Ambler, J. and Roberts, E. (1948) The effect of pH on the stability of cis-aconitic acid in dilute solution. Journal of organic chemistry, 13, 399–402.
  52. Ornston, L. N. and Stanier, R. Y. (1966b) The Protocatechuate pathway: The Conversion of Catechol and Protocatechuate to beta-Ketoadipate by Pseudomonas putida. The Journal of biological chemistry.
  53. Werpy, T. and Petersen, G. (2004) Top value added chemicals from biomass, Volume 1: Results of screening for potential candidates from sugars and synthesis gas. Technical report, Department of Energy Washington DC, United States.
  54. Nesbitt, B., OKelly, J., Sargeant, K. and Sheridan, A. (1962) Toxic metabolites of Aspergillus flavus. Nature, 195, 1062– 63.
  55. Snetselaar, K., Bölker, M. and Kahmann, R. (1996) Ustilago maydis Mating Hyphae Orient Their Growth toward Pheromone Sources. Fungal genetics and biology : FG & B, 20, 299– 312.
  56. Jansen, G., Wu, C., Schade, B., Thomas, D. Y. and Whiteway, M. (2005) Drag&Drop cloning in yeast. Gene, 344, 43–51. ISSN 0378-1119.
  57. Teichmann, B., Linne, U., Hewald, S., Marahiel, M. A. and Bölker, M. (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Molecular microbiology, 66, 525–33. ISSN 0950-382X.
  58. Voll, A. and Marquardt, W. (2012) Reaction Network Flux Analysis : Optimization-Based Eva- luation of Reaction Pathways for Biorenewables Processing. AIChE Journal, 58, 1788–1801.
  59. Maasem-Panakova, M. (2013) Itaconate production by Ustilago maydis: the influence of genes and cultivation conditions. Dissertation, RWTH Aachen.
  60. Williams, S. E., Woolridge, E. M., Ransom, S. C., Landro, J. A., Babbitt, P. C. and Kozarich, J. W. (1992) 3-Carboxy-cis,cis-muconate Lactonizing Enzyme from Pseudomonas putida Is Homologous to the Class II Fumarase Family: A New Reaction in the Evolution of a Mecha- nistic Motif. Biochemistry, 31, 9768–9776.
  61. Neilands, J. (1952) A crystalline organo-iron pigment from a rust fungus (Ustilago sphaerogena).
  62. Bell, J. (1989) The polymerase chain reaction. Immunol Today, 10, 351–355.
  63. Rhagavendra Rao, M. and Altekar, W. (1961) Aconitate Isomerase. Biochemical and Biophysical research communications, 4, 101–105.
  64. Verduyn, C., Postma, E., Scheffers, W. and Van Dijken, J. (1992) Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast, 8, 501–17.
  65. Mayser, P., Wille, G., Imkamp, A., Thoma, W., Arnold, N. and Monsees, T. (1998) Synthesis of fluorochromes and pigments in Malassezia furfur by use of tryptophan as the single nitrogen source. Mycoses, 41, 265–271.
  66. Kaplan, R., Mayor, J., Gremse, D. and Wood, O. (1995) High level expression and characteri- zation of the mitochondrial citrate transportprotein from the yeast Saccharomyces cerevisiae. The Journal of biological chemistry, 270, 4108–4114.
  67. Sikorski, R. S. and Hieter, P. (1989) A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae. Genetics, 122, 19–27.
  68. Pereira, G., Tanaka, T. U., Nasmyth, K. and Schiebel, E. (2001) Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. The EMBO journal, 20, 6359–70. ISSN 0261-4189.
  69. Trail, F., Mahanti, N., Rarick, M., Mehigh, R., Liang, S. H. and Zhou, R. (1995) Physical and transcriptional map of an aflatoxin gene cluster in Aspergillus parasiticus and functional disruption of a gene involved early in the aflatoxin pathway . Physical and Transcriptional Map of an Aflatoxin Gene Cluster in Aspergillus parasiticus. Applied and environmental microbiology, 61, 2665.
  70. Bonnarme, P., Gillet, B., Sepulchre, A. M., Role, C., Beloeil, J. C. and Ducrocq, C. (1995) Itaconate biosynthesis in Aspergillus terreus. Journal of bacteriology, 177, 3573–8. ISSN 0021-9193.
  71. Vida, T. A. and Em, S. D. (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol, 128, 779–792.
  72. Yim, G., Wang, H. H. and Davies, J. (2007) Antibiotics as signalling molecules. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 362, 1195–200. ISSN 0962-8436.
  73. Teichmann, B., Liu, L., Schink, K. O. and Bölker, M. (2010) Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C2H2 zinc finger transcription factor Rua1. Applied and environmental microbiology, 76, 2633–40. ISSN 1098-5336.
  74. Wang, A. M., Doyle, M. V. and Mark, D. F. (1989) Quantitation of mRNA by the polymerase chain reaction. Proceedings of the National Academy of Sciences of the United States of America, 86, 9717–21. ISSN 0027-8424.
  75. Strelko, C. L., Lu, W., Dufort, F. J., Seyfried, T. N., Chiles, T. C., Rabinowitz, J. D. and Roberts, M. F. (2011) Itaconic acid is a mammalian metabolite induced during macrophage activation. J Am Chem Soc., 133, 16386–16389.
  76. Reed, R. and Holder, M. (1953) The antibacterial spectrum of ustilagic acid. Can. J. Med Sci., 31, 505–511.
  77. Lockwood, L. and Reeves, M. (1945) Some factors affecting the production of itaconic acid by Aspergillus terreus. Arch Biochem, 6, 455–469.
  78. Jaklitsch, W., Kubicek, C. and Scrutton, M. (1991) Intracellular location of enzymes involved in citrate production by Aspergillus niger. Can. J. Microbiol, 37, 823–827.
  79. Michelucci, A., Cordes, T., Ghelfi, J., Pailot, A., Reiling, N., Goldmann, O., Binz, T., Wegner, A., Tallam, A., Rausell, A., Buttini, M., Linster, C. L., Medina, E., Balling, R. and Hiller, K. (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing Literaturverzeichnis itaconic acid production. Proceedings of the National Academy of Sciences of the United States of America, 110, 7820–5. ISSN 1091-6490.
  80. Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 74, 5463–5467.
  81. Bölker, M., Urban, M. and Kahmann, R. (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell, 68, 441–50. ISSN 0092-8674.
  82. Li, A., van Luijk, N., ter Beek, M., Caspers, M., Punt, P. and van der Werf, M. (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal genetics and biology : FG & B, 48, 602–11. ISSN 1096-0937.
  83. Bohman, V. R., Lesperance, A. L., Harding, G. D. and Grunes, D. L. (1969) Induction of Experimental Tetany in Cattle . Journal of animal sciences, 29, 99–102.
  84. Klement, T., Milker, S., Jäger, G., Grande, P. M., María, P. D. D. and Büchs, J. (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microbial Cell Factories, 11, 43. ISSN 1475-2859.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten