Publikationsserver der Universitätsbibliothek Marburg

Titel:Die immunregulativen Funktionen von adenosine deaminase acting on RNA 1 (ADAR1)
Autor:Großmann, Jenny
Weitere Beteiligte: Bauer, Stefan (Prof. Dr.)
Veröffentlicht:2014
URI:https://archiv.ub.uni-marburg.de/diss/z2014/0182
URN: urn:nbn:de:hebis:04-z2014-01828
DOI: https://doi.org/10.17192/z2014.0182
DDC: Medizin
Titel (trans.):The immunoregulatory functions of adenosine deaminase acting on RNA 1 (ADAR1)
Publikationsdatum:2014-02-19
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
TRIF, IRF3, Typ I Interferon, dendritische Zellen, Type I Interferon, TRIF, Makrophagen, differentiation, IRF3, ADAR1, ADAR1, Differenzierung, Editierung

Zusammenfassung:
Im Rahmen dieser Arbeit wurden die immunregulativen Funktionen von ADAR1 charakterisiert. Die besondere Domänenstruktur sowie die IFN-Induzierbarkeit von ADAR1 lassen eine Funktion über die Editierung bekannter, neuronal spezifischer Substrate hinaus annehmen. Durch einige Studien wurde diesbezüglich ein Zusammenhang von ADAR1 mit Typ I IFN-Signalwegen diskutiert, aber die Substrate bzw. die zugrundeliegenden Mechanismen sind weitgehend unverstanden. Daher sollte die ADAR1-abhängige Beteiligung an der Typ I IFN-Antwort, im Kontext verschiedener PRR-Liganden und Viren, in verschiedenen Immunzellen ADAR1-defizienter Modelle untersucht und mögliche zelltypspezifische Effekte charakterisiert werden. Für die Untersuchungen wurden murine ADAR1-defiziente Makrophagen und dendritische Zellen auf Grundlage des Cre/loxP-Rekombinationssystems generiert (ADAR1f7-9/LysMCre oder CD11cCre). Für das humane System wurde ein siRNA-vermittelter Knockdown in Monozyten etabliert. Die Untersuchung des Typ I IFN-Aktivierungspotentials von ADAR1-defizienten im Vergleich zu ADAR1-kompetenten, murinen Makrophagen sowie von humanen Monozyten durch verschiedene PRR-Liganden und Viren zeigte eine stark ADAR1-abhängige, modulierte Sekretion von Typ I IFN (Abb. 6.1). Während die Stimulation mit TRIF-abhängigen PRR-Liganden zu einer verstärkten IFNβ-Freisetzung führte, war die Typ I IFN-Antwort nach Stimulation mit viralen PAMPs oder Infektion mit Viren, die die Signalgebung TRIF-unabhängig vermitteln, in ADAR1-defizienten Zellen stark reduziert. Weitere Untersuchungen der für die Typ I IFN-Signalgebung wichtigen Moleküle offenbarten eine ausgeprägte Typ I IFN-Signatur in ADAR1-defizienten Zellen nach TRIF-abhängiger Stimulation entsprechend den beobachteten erhöhten IFNβ-Spiegeln. Überraschenderweise wurde auch im Kontext TRIF-unabhängiger Stimulation die Typ I IFN-Signatur durch die ADAR1-Defizienz erhöht, während aber die Typ I IFN-Freisetzung stark reduziert war. Besonders die Expression von IRF3 sowie der aktivierten, phosphorylierten Form war sowohl nach TRIF-abhängiger als auch nach TRIF-unabhängiger Stimulation erhöht. Immunfluoreszenz-Daten zeigten, dass im Kontext TRIF-unabhängiger Stimulation trotz der erhöhten IRF3-Expression, die nukleäre Translokation in ADAR1-defizienten Makrophagen ausblieb, während die TRIF-abhängige Stimulation eine effiziente IRF3-Translokation vermittelte. Diese Daten weisen ADAR1 eine bisher unbekannte Funktion als wichtigen Modulator der IRF3-vermittelten Typ I IFN-Antwort zu. In diesem Zusammenhang übt ADAR1 zum einen eine inhibitorische Funktion auf die TRIF-IRF3-Achse der Typ I IFN-Induktion aus. Zum anderen wird die IRF3-Translokation über die TRIF-unabhängige Signalgebung durch ADAR1 begünstigt, womit sich ADAR1 hier als Aktivator der IRF3-vermittelten Typ I IFN-Antwort zeigt. Folgerichtig konnte kein signifikanter, ADAR1-abhängiger Effekt auf das Typ I IFN-Aktivierungspotential von pDCs beobachtet werden, die als auf IFN-Produktion spezialisierte Zellen die Typ I IFN-Antwort unabhängig von IRF3 induzieren. Zukünftige Untersuchungen werden die zugrundeliegenden Mechanismen der modulatorischen Funktionen von ADAR1 auf die IRF3-Translokation sowie auf die TRIF-Aktivität klären müssen. Im Zuge der Untersuchung verschiedener ADAR1-defizienter Immunzellen wurde über den modulatorischen Effekt auf die Typ I IFN-Antwort hinaus, eine kritische Rolle der ADAR1-Funktion auf die Differenzierung von bestimmten cDCs in vitro sowie in vivo aufgezeigt. In vitro blieb in ADAR1-defizienten GM-CSF-Kulturen die Differenzierung zu mDCs vollständig aus, während in vivo die CD103-positive cDC-Zellpopulation in verschiedenen peripheren Organen konditionell ADAR1-defizienter Mäuse nicht detektiert werden konnte. Da sowohl die in vitro generierten mDCs als auch die CD103-positiven cDC-Population in vivo in Abhängigkeit von der GM-CSF-Signalgebung stehen, liegt ein durch die ADAR1-Defizienz-vermittelter Defekt dieser Signalgebung nahe. Weiterführende Experimente werden dies sowie einen möglichen Zusammenhang der dysregulierten cDC-Differenzierung mit den in Makrophagen beobachteten erhöhten Typ I IFN-Signatur klären müssen.

Bibliographie / References

  1. Clausen, B. E., C. Burkhardt, et al. (1999). "Conditional gene targeting in macrophages and granulocytes using LysMcre mice." Transgenic Res 8(4): 265-77.
  2. Strahle, L., D. Garcin, et al. (2006). "Sendai virus defective-interfering genomes and the activa- tion of interferon-beta." Virology 351(1): 101-11.
  3. Hertzog, P. J. (2012). "Overview. Type I interferons as primers, activators and inhibitors of innate and adaptive immune responses." Immunol Cell Biol 90(5): 471-3.
  4. Fleetwood, A. J., H. Dinh, et al. (2009). "GM-CSF-and M-CSF-dependent macrophage pheno- types display differential dependence on type I interferon signaling." J Leukoc Biol 86(2): 411-21.
  5. Levanon, E. Y., E. Eisenberg, et al. (2004). "Systematic identification of abundant A-to-I editing sites in the human transcriptome." Nat Biotechnol 22(8): 1001-5.
  6. Lehmann, K. A. and B. L. Bass (1999). "The importance of internal loops within RNA substrates of ADAR1." J Mol Biol 291(1): 1-13.
  7. Hoebe, K., X. Du, et al. (2003). "Identification of Lps2 as a key transducer of MyD88- independent TIR signalling." Nature 424(6950): 743-8.
  8. Akira, S., H. Isshiki, et al. (1992). "Regulation of expression of the interleukin 6 gene: structure and function of the transcription factor NF-IL6." Ciba Found Symp 167: 47-62; discussion 62-7.
  9. Zhan, Y., E. M. Carrington, et al. (2011). "GM-CSF increases cross-presentation and CD103 expression by mouse CD8(+) spleen dendritic cells." Eur J Immunol 41(9): 2585-95.
  10. Jin, Y., W. Zhang, et al. (2009). "Origins and evolution of ADAR-mediated RNA editing." IUBMB Life 61(6): 572-8.
  11. Liu, G. and H. Yang (2013). "Modulation of macrophage activation and programming in im- munity." J Cell Physiol 228(3): 502-12.
  12. Lei, M., Y. Liu, et al. (1998). "Adenovirus VAI RNA antagonizes the RNA-editing activity of the ADAR adenosine deaminase." Virology 245(2): 188-96.
  13. Zhang, Q., C. M. Zmasek, et al. (2010). "Domain architecture evolution of pattern-recognition receptors." Immunogenetics 62(5): 263-72.
  14. Hansen, J. D., L. N. Vojtech, et al. (2011). "Sensing disease and danger: a survey of vertebrate PRRs and their origins." Dev Comp Immunol 35(9): 886-97.
  15. Abdelsadik, A. and A. Trad (2011). "Toll-like receptors on the fork roads between innate and adaptive immunity." Human Immunology 72(12): 1188-1193.
  16. Hamm, S., E. Latz, et al. (2010). "Alternating 2'-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist." Immunobiology 215(7): 559-69.
  17. An, H., W. Zhao, et al. (2006). "SHP-2 phosphatase negatively regulates the TRIF adaptor pro- tein-dependent type I interferon and proinflammatory cytokine production." Immunity 25(6): 919-28.
  18. Athanasiadis, A., D. Placido, et al. (2005). "The crystal structure of the Zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains." J Mol Biol 351(3): 496-507.
  19. Steele, E. J. (2009). "Mechanism of somatic hypermutation: critical analysis of strand biased mutation signatures at A:T and G:C base pairs." Mol Immunol 46(3): 305-20.
  20. Peng, P. L., X. Zhong, et al. (2006). "ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia." Neuron 49(5): 719- 33.
  21. Stefl, R., M. Xu, et al. (2006). "Structure and specific RNA binding of ADAR2 double-stranded RNA binding motifs." Structure 14(2): 345-55.
  22. Sakaguchi, S., H. Negishi, et al. (2003). "Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock." Biochem Biophys Res Commun 306(4): 860-6.
  23. George, C. X. and C. E. Samuel (1999). "Characterization of the 5'-flanking region of the human RNA-specific adenosine deaminase ADAR1 gene and identification of an interferon- inducible ADAR1 promoter." Gene 229(1-2): 203-13.
  24. Reenan, R. A., C. J. Hanrahan, et al. (2000). "The mle(napts) RNA helicase mutation in drosoph- ila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing." Neuron 25(1): 139-49.
  25. Das, A. K. and G. G. Carmichael (2007). "ADAR editing wobbles the microRNA world." ACS Chem Biol 2(4): 217-20.
  26. Stanley, E. R., D. M. Chen, et al. (1978). "Induction of macrophage production and prolifera- tion by a purified colony stimulating factor." Nature 274(5667): 168-70.
  27. Klein, L., M. Hinterberger, et al. (2009). "Antigen presentation in the thymus for positive selec- tion and central tolerance induction." Nat Rev Immunol 9(12): 833-44.
  28. Hsieh, C. S., H. M. Lee, et al. (2012). "Selection of regulatory T cells in the thymus." Nat Rev Immunol 12(3): 157-67.
  29. Jiang, Z., T. W. Mak, et al. (2004). "Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta." Proc Natl Acad Sci U S A 101(10): 3533-8.
  30. Liu, Y. and C. E. Samuel (1999). "Editing of glutamate receptor subunit B pre-mRNA by splice- site variants of interferon-inducible double-stranded RNA-specific adenosine deaminase ADAR1." J Biol Chem 274(8): 5070-7.
  31. Wang, Q., M. Miyakoda, et al. (2004). "Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene." J Biol Chem 279(6): 4952-61.
  32. Hartner, J. C., C. Schmittwolf, et al. (2004). "Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1." J Biol Chem 279(6): 4894-902.
  33. George, C. X., M. V. Wagner, et al. (2005). "Expression of interferon-inducible RNA adenosine deaminase ADAR1 during pathogen infection and mouse embryo development involves tissue-selective promoter utilization and alternative splicing." J Biol Chem 280(15): 15020-8.
  34. Chilibeck, K. A., T. Wu, et al. (2006). "FRET analysis of in vivo dimerization by RNA-editing en- zymes." J Biol Chem 281(24): 16530-5.
  35. McAllister, C. S. and C. E. Samuel (2009). "The RNA-activated protein kinase enhances the induction of interferon-beta and apoptosis mediated by cytoplasmic RNA sensors." J Biol Chem 284(3): 1644-51.
  36. Hiscott, J. (2007). "Triggering the innate antiviral response through IRF-3 activation." J Biol Chem 282(21): 15325-9.
  37. Isaacs, A. and J. Lindenmann (1957). "Virus interference. I. The interferon." Proc R Soc Lond B Biol Sci 147(927): 258-67.
  38. Doe, C. M., D. Relkovic, et al. (2009). "Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour." Hum Mol Genet 18(12): 2140-8.
  39. Kawai, T. and S. Akira (2009). "The roles of TLRs, RLRs and NLRs in pathogen recognition." Int Immunol 21(4): 317-37.
  40. Ran, Y., T. T. Liu, et al. (2011). "SENP2 negatively regulates cellular antiviral response by deSUMOylating IRF3 and conditioning it for ubiquitination and degradation." J Mol Cell Biol 3(5): 283-92.
  41. Koeris, M., L. Funke, et al. (2005). "Modulation of ADAR1 editing activity by Z-RNA in vitro." Nucleic Acids Res 33(16): 5362-70.
  42. Bartlett, D. W. and M. E. Davis (2006). "Insights into the kinetics of siRNA-mediated gene si- lencing from live-cell and live-animal bioluminescent imaging." Nucleic Acids Research 34(1): 322-333.
  43. Kawahara, Y., M. Megraw, et al. (2008). "Frequency and fate of microRNA editing in human brain." Nucleic Acids Res 36(16): 5270-80.
  44. Ha, S. C., J. Choi, et al. (2009). "The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ alpha(ADAR1)." Nucleic Acids Res 37(2): 629-37.
  45. Enstero, M., C. Daniel, et al. (2009). "Recognition and coupling of A-to-I edited sites are de- termined by the tertiary structure of the RNA." Nucleic Acids Res 37(20): 6916-26.
  46. Wahlstedt, H., C. Daniel, et al. (2009). "Large-scale mRNA sequencing determines global regu- lation of RNA editing during brain development." Genome Res 19(6): 978-86.
  47. Bahn, J. H., J. H. Lee, et al. (2011). "Accurate identification of A-to-I RNA editing in human by transcriptome sequencing." Genome Res 22(1): 142-50.
  48. Blow, M., P. A. Futreal, et al. (2004). "A survey of RNA editing in human brain." Genome Res 14(12): 2379-87.
  49. Paz, N., E. Y. Levanon, et al. (2007). "Altered adenosine-to-inosine RNA editing in human can- cer." Genome Res 17(11): 1586-95.
  50. Hu, X., S. D. Chakravarty, et al. (2008). "Regulation of interferon and Toll-like receptor signal- ing during macrophage activation by opposing feedforward and feedback inhibition mechanisms." Immunol Rev 226: 41-56.
  51. Qian, C. and X. Cao (2012). "Regulation of Toll-like receptor signaling pathways in innate im- mune responses." Ann N Y Acad Sci 1283: 67-74.
  52. Wang, Q., J. Khillan, et al. (2000). "Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis." Science 290(5497): 1765-8.
  53. Shtrichman, R., D. M. Heithoff, et al. (2002). "Tissue selectivity of interferon-stimulated gene expression in mice infected with Dam(+) versus Dam(-) Salmonella enterica serovar Typhimurium strains." Infect Immun 70(10): 5579-88.
  54. Patterson, J. B. and C. E. Samuel (1995). "Expression and regulation by interferon of a double- stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase." Mol Cell Biol 15(10): 5376-88.
  55. O'Connell, M. A., S. Krause, et al. (1995). "Cloning of cDNAs encoding mammalian double- stranded RNA-specific adenosine deaminase." Mol Cell Biol 15(3): 1389-97.
  56. Moore, A. J. and M. K. Anderson (2013). "Dendritic cell development: a choose-your-own- adventure story." Adv Hematol 2013: 949513.
  57. Yang, C. H., J. Yue, et al. (2010). "IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN- induced apoptosis." Cancer Res 70(20): 8108-16.
  58. Desterro, J. M., L. P. Keegan, et al. (2003). "Dynamic association of RNA-editing enzymes with the nucleolus." J Cell Sci 116(Pt 9): 1805-18.
  59. Solomon, O., S. Oren, et al. (2013). "Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR)." Rna 19(5): 591-604.
  60. Luciano, D. J., H. Mirsky, et al. (2004). "RNA editing of a miRNA precursor." Rna 10(8): 1174-7.
  61. Holmes, C. and W. L. Stanford (2007). "Concise review: stem cell antigen-1: expression, func- tion, and enigma." Stem Cells 25(6): 1339-47.
  62. Sathe, P., J. Pooley, et al. (2011). "The acquisition of antigen cross-presentation function by newly formed dendritic cells." J Immunol 186(9): 5184-92.
  63. Ahmed, S., A. Maratha, et al. (2013). "TRIF-mediated TLR3 and TLR4 signaling is negatively regulated by ADAM15." J Immunol 190(5): 2217-28.
  64. Kaiser, W. J. and M. K. Offermann (2005). "Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif." J Immunol 174(8): 4942-52.
  65. Bibeau-Poirier, A., S. P. Gravel, et al. (2006). "Involvement of the IkappaB kinase (IKK)-related kinases tank-binding kinase 1/IKKi and cullin-based ubiquitin ligases in IFN regulatory factor-3 degradation." J Immunol 177(8): 5059-67.
  66. Fleetwood, A. J., T. Lawrence, et al. (2007). "Granulocyte-macrophage colony-stimulating fac- tor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation." J Immunol 178(8): 5245-52.
  67. Higgs, R., J. Ni Gabhann, et al. (2008). "The E3 ubiquitin ligase Ro52 negatively regulates IFN- beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3." J Immunol 181(3): 1780-6.
  68. Blow, M. J., R. J. Grocock, et al. (2006). "RNA editing of human microRNAs." Genome Biol 7(4): R27.
  69. Chen, L., Y. Li, et al. (2013). "Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma." Nat Med 19(2): 209-16.
  70. Melcher, T., S. Maas, et al. (1996). "RED2, a brain-specific member of the RNA-specific adeno- sine deaminase family." J Biol Chem 271(50): 31795-8.
  71. Melcher, T., S. Maas, et al. (1996). "A mammalian RNA editing enzyme." Nature 379(6564): 460-4.
  72. Higuchi, M., S. Maas, et al. (2000). "Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2." Nature 406(6791): 78-81.
  73. Sedger, L. M. (2013). "microRNA control of interferons and interferon induced anti-viral activi- ty." Mol Immunol 56(4): 781-793.
  74. Netea, M. G., C. Wijmenga, et al. (2012). "Genetic variation in Toll-like receptors and disease susceptibility." Nat Immunol 13(6): 535-42.
  75. Beghini, A., C. B. Ripamonti, et al. (2000). "RNA hyperediting and alternative splicing of hema- topoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia." Hum Mol Genet 9(15): 2297-304.
  76. Meraz, M. A., J. M. White, et al. (1996). "Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway." Cell 84(3): 431- 42.
  77. Cavlar, T., A. Ablasser, et al. (2012). "Induction of type I IFNs by intracellular DNA-sensing pathways." Immunol Cell Biol 90(5): 474-82.
  78. Suhara, W., M. Yoneyama, et al. (2000). "Analyses of virus-induced homomeric and heteromeric protein associations between IRF-3 and coactivator CBP/p300." J Biochem 128(2): 301-7.
  79. Elco, C. P., J. M. Guenther, et al. (2005). "Analysis of genes induced by Sendai virus infection of mutant cell lines reveals essential roles of interferon regulatory factor 3, NF-kappaB, and interferon but not toll-like receptor 3." J Virol 79(7): 3920-9.
  80. Orlandi, C., A. Barbon, et al. (2012). "Activity regulation of adenosine deaminases acting on RNA (ADARs)." Mol Neurobiol 45(1): 61-75.
  81. Abb. IV.1 Sekundärantikörper-Kontrollen für Immunfluoreszenz-Färbungen von IRF3 und IRF7 in Mak- rophagen nach Stimulation mit LPS oder SeV. ADAR1-defiziente (ADAR1 f7-9/f7-9
  82. Bass, B. L. and H. Weintraub (1987). "A developmentally regulated activity that unwinds RNA duplexes." Cell 48(4): 607-13.
  83. Die Sekundärantikörper-Kontrollen (2.AK) zeigten keine unspezifische Färbung. Repräsentativ für drei unabhängige Experimente.
  84. Cabanas, C. and F. Sanchez-Madrid (1999). "CD11c (leukocyte integrin CR4 alpha subunit)." J Biol Regul Homeost Agents 13(2): 134-6.
  85. Bedoui, S., P. G. Whitney, et al. (2009). "Cross-presentation of viral and self antigens by skin- derived CD103+ dendritic cells." Nat Immunol 10(5): 488-95.
  86. Yamamoto, M., S. Sato, et al. (2002). "Cutting edge: a novel Toll/IL-1 receptor domain- containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling." J Immunol 169(12): 6668-72.
  87. Wu, J., L. Sun, et al. (2013). "Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA." Science 339(6121): 826-30.
  88. Kato, H., O. Takeuchi, et al. (2006). "Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses." Nature 441(7089): 101-5.
  89. Marie, I., J. E. Durbin, et al. (1998). "Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7." Embo J 17(22): 6660-9.
  90. Sato, M., H. Suemori, et al. (2000). "Distinct and Essential Roles of Transcription Factors IRF-3 and IRF-7 in Response to Viruses for IFN-α/β Gene Induction." Immunity 13(4): 539- 548.
  91. Cenci, C., R. Barzotti, et al. (2008). "Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation." J Biol Chem 283(11): 7251-60.
  92. Matsumoto, M., S. Kikkawa, et al. (2002). "Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling." Biochem Biophys Res Commun 293(5): 1364-9.
  93. Liu, Y., C. X. George, et al. (1997). "Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double- stranded RNA-specific adenosine deaminase." J Biol Chem 272(7): 4419-28.
  94. Inaba, K., M. Inaba, et al. (1992). "Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor." J Exp Med 176(6): 1693-702.
  95. Brasel, K., T. De Smedt, et al. (2000). "Generation of murine dendritic cells from flt3-ligand- supplemented bone marrow cultures." Blood 96(9): 3029-39.
  96. Guo, J. J., Q. L. Li, et al. (2006). "Histone deacetylation is involved in activation of CXCL10 upon IFNgamma stimulation." Mol Cells 22(2): 163-7.
  97. Ishii, K. J., S. Koyama, et al. (2008). "Host innate immune receptors and beyond: making sense of microbial infections." Cell Host Microbe 3(6): 352-63.
  98. Wang, S., K. Wang, et al. (2013). "HSV-1 Serine/Threonine Kinase US3 Hyperphosphorylates IRF3 and Inhibits the IFN-beta production." J Virol.
  99. Tamura, T., P. Tailor, et al. (2005). "IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity." J Immunol 174(5): 2573-81.
  100. Kishore, N., Q. K. Huynh, et al. (2002). "IKK-i and TBK-1 are enzymatically distinct from the homologous enzyme IKK-2: comparative analysis of recombinant human IKK-i, TBK-1, and IKK-2." J Biol Chem 277(16): 13840-7.
  101. Brownell, J., J. Wagoner, et al. (2013). "Independent, parallel pathways to CXCL10 induction in HCV-infected hepatocytes." J Hepatol.
  102. Gil, J. and M. Esteban (2000). "Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action." Apoptosis 5(2): 107-14.
  103. Janeway, C. A., Jr. and R. Medzhitov (2002). "Innate immune recognition." Annu Rev Immunol 20: 197-216.
  104. Honda, K. and T. Taniguchi (2006). "IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors." Nat Rev Immunol 6(9): 644-58.
  105. Murphy, K. (2011). Janeway`s Immunobiology. New York, Garland Science Taylor & Francis Group.
  106. Wen, Z., Z. Zhong, et al. (1995). "Maximal activation of transcription by statl and stat3 requires both tyrosine and serine phosphorylation." Cell 82(2): 241-250.
  107. LysMCre + ) oder ADAR1- kompetente (ADAR1 +/+ LysMCre + ) M-CSF-generierte Makrophagen wurden mit LPS [1 µg/ml] stimuliert, mit Sendai Virus (SeV) [2 MOI] infiziert oder unbehandelt belassen (Ctrl). Die Zellen wurden nur mit dem Fluoreszenz-markierten, sekundären Antikörper inkubiert (rot). Die Zellkerne wurden mit DAPI gegengefärbt (blau). Die Immunfluoreszenzen wurden mittels konfokaler Mikroskopie aufgenommen.
  108. Lim, L. P., N. C. Lau, et al. (2005). "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs." Nature 433(7027): 769-73.
  109. Kim, V. N. (2005). "MicroRNA biogenesis: coordinated cropping and dicing." Nat Rev Mol Cell Biol 6(5): 376-85.
  110. Keller, E. T., J. Wanagat, et al. (1996). "Molecular and cellular biology of interleukin-6 and its receptor." Front Biosci 1: d340-57.
  111. Behrendt, R. and A. Roers (2013). "Mouse models for Aicardi-Goutieres syndrome provide clues to the molecular pathogenesis of systemic autoimmunity." Clin Exp Immunol.
  112. Rice, G. I., P. R. Kasher, et al. (2013). "Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature." Nat Genet 44(11): 1243-8.
  113. Honda, K., T. Mizutani, et al. (2004). "Negative regulation of IFN-alpha/beta signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells." Proc Natl Acad Sci U S A 101(8): 2416-21.
  114. Hoopengardner, B., T. Bhalla, et al. (2003). "Nervous system targets of RNA editing identified by comparative genomics." Science 301(5634): 832-6.
  115. Reich, N. C. (2002). "Nuclear/cytoplasmic localization of IRFs in response to viral infection or interferon stimulation." J Interferon Cytokine Res 22(1): 103-9.
  116. Servant, M. J., B. Tenoever, et al. (2002). "Overlapping and distinct mechanisms regulating IRF- 3 and IRF-7 function." J Interferon Cytokine Res 22(1): 49-58.
  117. Hoffmann, J. A., F. C. Kafatos, et al. (1999). "Phylogenetic perspectives in innate immunity." Science 284(5418): 1313-8.
  118. Sato, M., N. Hata, et al. (1998). "Positive feedback regulation of type I IFN genes by the IFN- inducible transcription factor IRF-7." FEBS Lett 441(1): 106-10.
  119. Kim, U., T. L. Garner, et al. (1994). "Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts." J Biol Chem 269(18): 13480-9.
  120. Bauer, S., S. Pigisch, et al. (2008). "Recognition of nucleic acid and nucleic acid analogs by Toll- like receptors 7, 8 and 9." Immunobiology 213(3-4): 315-28.
  121. Kawahara, Y., B. Zinshteyn, et al. (2007). "Redirection of silencing targets by adenosine-to- inosine editing of miRNAs." Science 315(5815): 1137-40.
  122. Halloran, P. F., J. Urmson, et al. (1989). "Regulation of MHC expression in vivo. II. IFN- alpha/beta inducers and recombinant IFN-alpha modulate MHC antigen expression in mouse tissues." J Immunol 142(12): 4241-7.
  123. Burns, C. M., H. Chu, et al. (1997). "Regulation of serotonin-2C receptor G-protein coupling by RNA editing." Nature 387(6630): 303-8.
  124. Cho, D. S., W. Yang, et al. (2003). "Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA." J Biol Chem 278(19): 17093-102.
  125. Wang, Q. (2011). "RNA editing catalyzed by ADAR1 and its function in mammalian cells." Bio- chemistry (Mosc) 76(8): 900-11.
  126. Higuchi, M., F. N. Single, et al. (1993). "RNA editing of AMPA receptor subunit GluR-B: a base- paired intron-exon structure determines position and efficiency." Cell 75(7): 1361-70.
  127. Polson, A. G., B. L. Bass, et al. (1996). "RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase." Nature 380(6573): 454-6.
  128. Lee, M. S. and Y. J. Kim (2007). "Signaling pathways downstream of pattern-recognition recep- tors and their cross talk." Annu Rev Biochem 76: 447-80.
  129. Hemmi, H., T. Kaisho, et al. (2002). "Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway." Nat Immunol 3(2): 196-200.
  130. Durbin, J. E., R. Hackenmiller, et al. (1996). "Targeted disruption of the mouse Stat1 gene re- sults in compromised innate immunity to viral disease." Cell 84(3): 443-50.
  131. Lemaitre, B., E. Nicolas, et al. (1996). "The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults." Cell 86(6): 973-83.
  132. Zhang, Z. and G. G. Carmichael (2001). "The fate of dsRNA in the nucleus: a p54(nrb)- containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs." Cell 106(4): 465-75.
  133. Carty, M., R. Goodbody, et al. (2006). "The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling." Nat Immunol 7(10): 1074-81.
  134. Tamura, T., H. Yanai, et al. (2008). "The IRF family transcription factors in immunity and oncogenesis." Annu Rev Immunol 26: 535-84.
  135. Kawai, T. and S. Akira (2010). "The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors." Nat Immunol 11(5): 373-84.
  136. Decker, T., M. Muller, et al. (2005). "The yin and yang of type I interferon activity in bacterial infection." Nat Rev Immunol 5(9): 675-87.
  137. Brown, B. A., 2nd, K. Lowenhaupt, et al. (2000). "The zalpha domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA." Proc Natl Acad Sci U S A 97(25): 13532-6.
  138. Kawai, T. and S. Akira (2011). "Toll-like Receptors and Their Crosstalk with Other Innate Recep- tors in Infection and Immunity." Immunity 34(5): 637-650.
  139. Akira, S. and K. Takeda (2004). "Toll-like receptor signalling." Nat Rev Immunol 4(7): 499-511.
  140. Kagan, J. C., T. Su, et al. (2008). "TRAM couples endocytosis of Toll-like receptor 4 to the in- duction of interferon-beta." Nat Immunol 9(4): 361-8.
  141. Sharma, S., B. R. tenOever, et al. (2003). "Triggering the interferon antiviral response through an IKK-related pathway." Science 300(5622): 1148-51.
  142. Honda, K., A. Takaoka, et al. (2006). "Type I Inteferon Gene Induction by the Interferon Regu- latory Factor Family of Transcription Factors." Immunity 25(3): 349-360.
  143. Trinchieri, G. (2010). "Type I interferon: friend or foe?" J Exp Med 207(10): 2053-63.
  144. Lin, R., C. Heylbroeck, et al. (1998). "Virus-dependent phosphorylation of the IRF-3 transcrip- tion factor regulates nuclear translocation, transactivation potential, and proteasome- mediated degradation." Mol Cell Biol 18(5): 2986-96.
  145. Oldenburg, M., A. Kruger, et al. (2012). "TLR13 recognizes bacterial 23S rRNA devoid of eryth- romycin resistance-forming modification." Science 337(6098): 1111-5.
  146. Tamassia, N., F. Calzetti, et al. (2007). "Molecular mechanisms underlying the synergistic in- duction of CXCL10 by LPS and IFN-gamma in human neutrophils." Eur J Immunol 37(9): 2627-34.
  147. Volz, T., S. Kaesler, et al. (2012). "Innate immune sensing 2.0 -from linear activation pathways to fine tuned and regulated innate immune networks." Exp Dermatol 21(1): 61-9.
  148. Fritz, J., A. Strehblow, et al. (2009). "RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1." Mol Cell Biol 29(6): 1487-97.
  149. Henri, S., L. F. Poulin, et al. (2012). "CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells." J Exp Med 207(1): 189-206.
  150. Li, J. B., E. Y. Levanon, et al. (2009). "Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing." Science 324(5931): 1210-3.
  151. Fitzgerald, K. A., S. M. McWhirter, et al. (2003). "IKKepsilon and TBK1 are essential compo- nents of the IRF3 signaling pathway." Nat Immunol 4(5): 491-6.
  152. Carpenter, S. and L. A. O'Neill (2009). "Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins." Biochem J 422(1): 1-10.
  153. Akiyama, M. K. a. M. (2013). "Dyschromatosis Symmetrica Hereditaria and RNA Editing En- zyme." Current Genetics in Dermatology.
  154. Samuel, C. E. (1993). "The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans." J Biol Chem 268(11): 7603-6.
  155. Lin, R., Y. Mamane, et al. (2000). "Multiple regulatory domains control IRF-7 activity in re- sponse to virus infection." J Biol Chem 275(44): 34320-7.
  156. Yang, H., C. H. Lin, et al. (2003). "Interferon regulatory factor-7 synergizes with other tran- scription factors through multiple interactions with p300/CBP coactivators." J Biol Chem 278(18): 15495-504.
  157. McCoy, C. E., S. Carpenter, et al. (2008). "Glucocorticoids inhibit IRF3 phosphorylation in re- sponse to Toll-like receptor-3 and -4 by targeting TBK1 activation." J Biol Chem 283(21): 14277-85.
  158. Brawand, P., D. R. Fitzpatrick, et al. (2002). "Murine plasmacytoid pre-dendritic cells generat- ed from Flt3 ligand-supplemented bone marrow cultures are immature APCs." J Immunol 169(12): 6711-9.
  159. Rula, E. Y., A. H. Lagrange, et al. (2008). "Developmental modulation of GABA(A) receptor function by RNA editing." J Neurosci 28(24): 6196-201.
  160. Tan, B. Z., H. Huang, et al. (2009). "Dynamic regulation of RNA editing of ion channels and receptors in the mammalian nervous system." Mol Brain 2: 13.
  161. Alexopoulou, L., A. C. Holt, et al. (2001). "Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3." Nature 413(6857): 732-8.
  162. Hartner, J. C., C. R. Walkley, et al. (2009). "ADAR1 is essential for the maintenance of hemato- poiesis and suppression of interferon signaling." Nat Immunol 10(1): 109-15.
  163. Vitali, P. and A. D. Scadden (2010). "Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis." Nat Struct Mol Biol 17(9): 1043-50.
  164. Lei, C. Q., Y. Zhang, et al. (2013). "FoxO1 negatively regulates cellular antiviral response by promoting degradation of IRF3." J Biol Chem 288(18): 12596-604.
  165. Scadden, A. D. and C. W. Smith (2001). "RNAi is antagonized by A-->I hyper-editing." EMBO Rep 2(12): 1107-11.
  166. Nie, Y., L. Ding, et al. (2005). "ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing." Mol Cell Biol 25(16): 6956-63.
  167. Caillaud, A., A. G. Hovanessian, et al. (2005). "Regulatory serine residues mediate phosphory- lation-dependent and phosphorylation-independent activation of interferon regulatory factor 7." J Biol Chem 280(18): 17671-7.
  168. Desterro, J. M., L. P. Keegan, et al. (2005). "SUMO-1 modification alters ADAR1 editing activi- ty." Mol Biol Cell 16(11): 5115-26.
  169. George, C. X. and C. E. Samuel (1999). "Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible." Proc Natl Acad Sci U S A 96(8): 4621-6.
  170. Prakash, A. and D. E. Levy (2006). "Regulation of IRF7 through cell type-specific protein stabil- ity." Biochem Biophys Res Commun 342(1): 50-6.
  171. Gallo, A., L. P. Keegan, et al. (2003). "An ADAR that edits transcripts encoding ion channel sub- units functions as a dimer." Embo J 22(13): 3421-30.
  172. Bass, B. L. (2002). "RNA editing by adenosine deaminases that act on RNA." Annu Rev Biochem 71: 817-46.
  173. Kawahara, Y., B. Zinshteyn, et al. (2007). "RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex." EMBO Rep 8(8): 763-9.
  174. Caton, M. L., M. R. Smith-Raska, et al. (2007). "Notch-RBP-J signaling controls the homeostasis of CD8-dendritic cells in the spleen." J Exp Med 204(7): 1653-64.
  175. Agranat, L., O. Raitskin, et al. (2008). "The editing enzyme ADAR1 and the mRNA surveillance protein hUpf1 interact in the cell nucleus." Proc Natl Acad Sci U S A 105(13): 5028-33.
  176. Herbert, A., J. Alfken, et al. (1997). "A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase." Proc Natl Acad Sci U S A 94(16): 8421-6.
  177. Lai, F., C. X. Chen, et al. (1997). "Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases." Mol Cell Biol 17(5): 2413-24.
  178. Kato, H., O. Takeuchi, et al. (2008). "Length-dependent recognition of double-stranded ribo- nucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5." J Exp Med 205(7): 1601-10.
  179. George, C. X., S. Das, et al. (2008). "Organization of the mouse RNA-specific adenosine deaminase Adar1 gene 5'-region and demonstration of STAT1-independent, STAT2- dependent transcriptional activation by interferon." Virology 380(2): 338-43.
  180. Pandey, A. K., Y. Yang, et al. (2009). "NOD2, RIP2 and IRF5 play a critical role in the type I inter- feron response to Mycobacterium tuberculosis." PLoS Pathog 5(7): e1000500.
  181. XuFeng, R., M. J. Boyer, et al. (2009). "ADAR1 is required for hematopoietic progenitor cell survival via RNA editing." Proc Natl Acad Sci U S A 106(42): 17763-8.
  182. Goubau, D., R. Romieu-Mourez, et al. (2009). "Transcriptional re-programming of primary macrophages reveals distinct apoptotic and anti-tumoral functions of IRF-3 and IRF-7." Eur J Immunol 39(2): 527-40.
  183. McAllister, C. S., A. M. Toth, et al. (2010). "Mechanisms of protein kinase PKR-mediated ampli- fication of beta interferon induction by C protein-deficient measles virus." J Virol 84(1): 380-6.
  184. Sauer, B. and N. Henderson (1988). "Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1." Proc Natl Acad Sci U S A 85(14): 5166-70.
  185. Watanabe, T., N. Asano, et al. (2010). "NOD1 contributes to mouse host defense against Heli- cobacter pylori via induction of type I IFN and activation of the ISGF3 signaling path- way." J Clin Invest 120(5): 1645-62.
  186. King, I. L., M. A. Kroenke, et al. (2010). "GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization." J Exp Med 207(5): 953-61.
  187. Wagner, R. W., J. E. Smith, et al. (1989). "A double-stranded RNA unwinding activity introduc- es structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs." Proc Natl Acad Sci U S A 86(8): 2647-51.
  188. Chattopadhyay, S., J. T. Marques, et al. (2010). "Viral apoptosis is induced by IRF-3-mediated activation of Bax." Embo J 29(10): 1762-73.
  189. Iizasa, H. and K. Nishikura (2009). "A new function for the RNA-editing enzyme ADAR1." Nat Immunol 10(1): 16-8.
  190. Mombereau, C., Y. Kawahara, et al. (2009). "Functional relevance of serotonin 2C receptor mRNA editing in antidepressant-and anxiety-like behaviors." Neuropharmacology 59(6): 468-73.
  191. Yang, W., Q. Wang, et al. (2005). "ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells." J Biol Chem 280(5): 3946-53.
  192. Yang, W., T. P. Chendrimada, et al. (2006). "Modulation of microRNA processing and expres- sion through RNA editing by ADAR deaminases." Nat Struct Mol Biol 13(1): 13-21.
  193. Nishikura, K. (2010). "Functions and regulation of RNA editing by ADAR deaminases." Annu Rev Biochem 79: 321-49.
  194. Nishikura, K. (2006). "Editor meets silencer: crosstalk between RNA editing and RNA interfer- ence." Nat Rev Mol Cell Biol 7(12): 919-31.
  195. Valente, L. and K. Nishikura (2007). "RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions." J Biol Chem 282(22): 16054-61.
  196. Iizasa, H., B. E. Wulff, et al. (2010). "Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency." J Biol Chem 285(43): 33358-70.
  197. Skaug, B. and Z. J. Chen (2010). "Emerging role of ISG15 in antiviral immunity." Cell 143(2): 187-90.
  198. George, C. X., Z. Gan, et al. (2011). "Adenosine deaminases acting on RNA, RNA editing, and interferon action." J Interferon Cytokine Res 31(1): 99-117.
  199. Eggington, J. M., T. Greene, et al. (2011). "Predicting sites of ADAR editing in double-stranded RNA." Nat Commun 2: 319.
  200. Unterholzner, L., S. E. Keating, et al. (2010). "IFI16 is an innate immune sensor for intracellular DNA." Nat Immunol 11(11): 997-1004.
  201. Kushwah, R. and J. Hu (2011). "Complexity of dendritic cell subsets and their function in the host immune system." Immunology 133(4): 409-19.
  202. Akira, S. (2011). "Innate immunity and adjuvants." Philos Trans R Soc Lond B Biol Sci 366(1579): 2748-55.
  203. Pfaller, C. K., Z. Li, et al. (2011). "Protein kinase PKR and RNA adenosine deaminase ADAR1: new roles for old players as modulators of the interferon response." Curr Opin Immunol 23(5): 573-82.
  204. Marcucci, R., J. Brindle, et al. (2011). "Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects." Embo J 30(20): 4211-22.
  205. Barraud, P. and F. H. Allain (2011). "ADAR proteins: double-stranded RNA and Z-DNA binding domains." Curr Top Microbiol Immunol 353: 35-60.
  206. Levy, D. E., I. J. Marie, et al. (2011). "Induction and function of type I and III interferon in re- sponse to viral infection." Curr Opin Virol 1(6): 476-86.
  207. Newton, K. and V. M. Dixit (2012). "Signaling in innate immunity and inflammation." Cold Spring Harb Perspect Biol 4(3).
  208. Smale, S. T. (2012). "Transcriptional regulation in the innate immune system." Curr Opin Immunol 24(1): 51-7.
  209. Field, A. K., A. A. Tytell, et al. (1967). "Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes." Proc Natl Acad Sci U S A 58(3): 1004-10.
  210. Bryant, C. E. and T. P. Monie (2012). "Mice, men and the relatives: cross-species studies un- derpin innate immunity." Open Biol 2(4): 120015.
  211. Shtrichman, R., I. Germanguz, et al. (2012). "Altered A-to-I RNA editing in human embryogen- esis." PLoS One 7(7): e41576.
  212. Kagan, J. C. (2012). "Defining the subcellular sites of innate immune signal transduction." Trends Immunol 33(9): 442-8.
  213. Raitskin, O., D. S. Cho, et al. (2001). "RNA editing activity is associated with splicing factors in lnRNP particles: The nuclear pre-mRNA processing machinery." Proc Natl Acad Sci U S A 98(12): 6571-6.
  214. Greter, M., J. Helft, et al. (2012). "GM-CSF controls nonlymphoid tissue dendritic cell homeo- stasis but is dispensable for the differentiation of inflammatory dendritic cells." Immuni- ty 36(6): 1031-46.
  215. Cervantes, J. L., B. Weinerman, et al. (2012). "TLR8: the forgotten relative revindicated." Cell Mol Immunol 9(6): 434-8.
  216. Akira, S. (2009). "Pathogen recognition by innate immunity and its signaling." Proc Jpn Acad Ser B Phys Biol Sci 85(4): 143-56.
  217. Jiang, Q., L. A. Crews, et al. (2012). "ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia." Proc Natl Acad Sci U S A 110(3): 1041-6.
  218. Liu, G. and E. Abraham (2013). "MicroRNAs in immune response and macrophage polariza- tion." Arterioscler Thromb Vasc Biol 33(2): 170-7.
  219. Steinman, R. A., Q. Yang, et al. (2012). "Deletion of the RNA-editing enzyme ADAR1 causes regression of established chronic myelogenous leukemia in mice." Int J Cancer 132(8): 1741-50.
  220. Shimokawa, T., M. F. Rahman, et al. (2013). "RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling." RNA Biol 10(2): 321-33.
  221. Koblansky, A. A., D. Jankovic, et al. (2013). "Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii." Immunity 38(1): 119-30.
  222. Ota, H., M. Sakurai, et al. (2013). "ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing." Cell 153(3): 575-89.
  223. Colonna, M., G. Trinchieri, et al. (2004). "Plasmacytoid dendritic cells in immunity." Nat Immunol 5(12): 1219-26.
  224. Ichikawa, E., S. Hida, et al. (2004). "Defective development of splenic and epidermal CD4+ dendritic cells in mice deficient for IFN regulatory factor-2." Proc Natl Acad Sci U S A 101(11): 3909-14.
  225. Merad, M., P. Sathe, et al. (2013). "The dendritic cell lineage: ontogeny and function of den- dritic cells and their subsets in the steady state and the inflamed setting." Annu Rev Immunol 31: 563-604.
  226. Sun, L., J. Wu, et al. (2013). "Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway." Science 339(6121): 786-91.
  227. Samuel, C. E. (2011). "ADARs: viruses and innate immunity." Curr Top Microbiol Immunol 353: 163-95.
  228. Au, W. C., P. A. Moore, et al. (1995). "Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes." Proc Natl Acad Sci U S A 92(25): 11657-61.
  229. Kim, U., Y. Wang, et al. (1994). "Molecular cloning of cDNA for double-stranded RNA adeno- sine deaminase, a candidate enzyme for nuclear RNA editing." Proc Natl Acad Sci U S A 91(24): 11457-61.
  230. Nishikura, K., C. Yoo, et al. (1991). "Substrate specificity of the dsRNA unwinding/modifying activity." Embo J 10(11): 3523-32.
  231. Matsusaka, T., K. Fujikawa, et al. (1993). "Transcription factors NF-IL6 and NF-kappa B syner- gistically activate transcription of the inflammatory cytokines, interleukin 6 and inter- leukin 8." Proc Natl Acad Sci U S A 90(21): 10193-7.
  232. Schindler, C., X. Y. Fu, et al. (1992). "Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha." Proc Natl Acad Sci U S A 89(16): 7836-9.
  233. Bauer, S., C. J. Kirschning, et al. (2001). "Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition." Proc Natl Acad Sci U S A 98(16): 9237-42.
  234. Kumar, K. P., K. M. McBride, et al. (2000). "Regulated nuclear-cytoplasmic localization of inter- feron regulatory factor 3, a subunit of double-stranded RNA-activated factor 1." Mol Cell Biol 20(11): 4159-68.
  235. Marie, I., E. Smith, et al. (2000). "Phosphorylation-induced dimerization of interferon regula- tory factor 7 unmasks DNA binding and a bipartite transactivation domain." Mol Cell Biol 20(23): 8803-14.
  236. Poulsen, H., J. Nilsson, et al. (2001). "CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain." Mol Cell Biol 21(22): 7862-71.
  237. Gerber, A., M. A. O'Connell, et al. (1997). "Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette." Rna 3(5): 453-63.
  238. Chen, C. X., D. S. Cho, et al. (2000). "A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single-and double-stranded RNA binding domains." Rna 6(5): 755-67.
  239. Rebagliati, M. R. and D. A. Melton (1987). "Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity." Cell 48(4): 599-605.
  240. Bass, B. L. and H. Weintraub (1988). "An unwinding activity that covalently modifies its dou- ble-stranded RNA substrate." Cell 55(6): 1089-98.
  241. Werry, T. D., R. Loiacono, et al. (2008). "RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function." Pharmacol Ther 119(1): 7- 23.
  242. Koj, A. (1996). "Initiation of acute phase response and synthesis of cytokines." Biochim Biophys Acta 1317(2): 84-94.
  243. Haas, T., J. Metzger, et al. (2008). "The DNA sugar backbone 2' deoxyribose determines toll- like receptor 9 activation." Immunity 28(3): 315-23.
  244. Kumar, H., T. Kawai, et al. (2011). "Pathogen recognition by the innate immune system." Int Rev Immunol 30(1): 16-34.
  245. Kingston, D., M. A. Schmid, et al. (2009). "The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis." Blood 114(4): 835-43.
  246. Takahashi, M., T. Yoshimoto, et al. (2006). "Loss of function of the candidate tumor suppres- sor prox1 by RNA mutation in human cancer cells." Neoplasia 8(12): 1003-10.
  247. Athanasiadis, A., A. Rich, et al. (2004). "Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome." PLoS Biol 2(12): e391.
  248. Hackstein, H., A. Wachtendorf, et al. (2012). "Heterogeneity of respiratory dendritic cell sub- sets and lymphocyte populations in inbred mouse strains." Respir Res 13: 94.
  249. Scaffidi, C., I. Schmitz, et al. (1999). "Differential modulation of apoptosis sensitivity in CD95 type I and type II cells." J Biol Chem 274(32): 22532-8.
  250. Yang, K., H. X. Shi, et al. (2009). "TRIM21 is essential to sustain IFN regulatory factor 3 activa- tion during antiviral response." J Immunol 182(6): 3782-92.
  251. Ziegler-Heitbrock, H. W. (1995). "Molecular mechanism in tolerance to lipopolysaccharide." J Inflamm 45(1): 13-26. ANHANG 156 IV. ANHANG


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten