Zusammenfassung:
Im Rahmen dieser Arbeit wurden die immunregulativen Funktionen von ADAR1 charakterisiert. Die besondere Domänenstruktur sowie die IFN-Induzierbarkeit von ADAR1 lassen eine Funktion über die Editierung bekannter, neuronal spezifischer Substrate hinaus annehmen.
Durch einige Studien wurde diesbezüglich ein Zusammenhang von ADAR1 mit Typ I IFN-Signalwegen diskutiert, aber die Substrate bzw. die zugrundeliegenden Mechanismen sind weitgehend unverstanden. Daher sollte die ADAR1-abhängige Beteiligung an der Typ I IFN-Antwort, im Kontext verschiedener PRR-Liganden und Viren, in verschiedenen Immunzellen ADAR1-defizienter Modelle untersucht und mögliche zelltypspezifische Effekte charakterisiert werden. Für die Untersuchungen wurden murine ADAR1-defiziente Makrophagen und dendritische Zellen auf Grundlage des Cre/loxP-Rekombinationssystems generiert (ADAR1f7-9/LysMCre oder CD11cCre). Für das humane System wurde ein siRNA-vermittelter Knockdown in Monozyten etabliert.
Die Untersuchung des Typ I IFN-Aktivierungspotentials von ADAR1-defizienten im Vergleich zu ADAR1-kompetenten, murinen Makrophagen sowie von humanen Monozyten durch verschiedene PRR-Liganden und Viren zeigte eine stark ADAR1-abhängige, modulierte Sekretion von Typ I IFN (Abb. 6.1). Während die Stimulation mit TRIF-abhängigen PRR-Liganden zu einer verstärkten IFNβ-Freisetzung führte, war die Typ I IFN-Antwort nach Stimulation mit viralen PAMPs oder Infektion mit Viren, die die Signalgebung TRIF-unabhängig vermitteln, in ADAR1-defizienten Zellen stark reduziert. Weitere Untersuchungen der für die Typ I IFN-Signalgebung wichtigen Moleküle offenbarten eine ausgeprägte Typ I IFN-Signatur in ADAR1-defizienten Zellen nach TRIF-abhängiger Stimulation entsprechend den beobachteten erhöhten IFNβ-Spiegeln. Überraschenderweise wurde auch im Kontext TRIF-unabhängiger Stimulation die Typ I IFN-Signatur durch die ADAR1-Defizienz erhöht, während aber die Typ I IFN-Freisetzung stark reduziert war. Besonders die Expression von IRF3 sowie der aktivierten, phosphorylierten Form war sowohl nach TRIF-abhängiger als auch nach TRIF-unabhängiger Stimulation erhöht. Immunfluoreszenz-Daten zeigten, dass im Kontext TRIF-unabhängiger Stimulation trotz der erhöhten IRF3-Expression, die nukleäre Translokation in ADAR1-defizienten Makrophagen ausblieb, während die TRIF-abhängige Stimulation eine effiziente IRF3-Translokation vermittelte. Diese Daten weisen ADAR1 eine bisher unbekannte Funktion als wichtigen Modulator der IRF3-vermittelten Typ I IFN-Antwort zu. In diesem Zusammenhang übt ADAR1 zum einen eine inhibitorische Funktion auf die TRIF-IRF3-Achse der Typ I IFN-Induktion aus. Zum anderen wird die IRF3-Translokation über die TRIF-unabhängige Signalgebung durch ADAR1 begünstigt, womit sich ADAR1 hier als Aktivator der IRF3-vermittelten Typ I IFN-Antwort zeigt. Folgerichtig konnte kein signifikanter, ADAR1-abhängiger Effekt auf das Typ I IFN-Aktivierungspotential von pDCs beobachtet werden, die als auf IFN-Produktion spezialisierte Zellen die Typ I IFN-Antwort unabhängig von IRF3 induzieren. Zukünftige Untersuchungen werden die zugrundeliegenden Mechanismen der modulatorischen Funktionen von ADAR1 auf die IRF3-Translokation sowie auf die TRIF-Aktivität klären müssen.
Im Zuge der Untersuchung verschiedener ADAR1-defizienter Immunzellen wurde über den modulatorischen Effekt auf die Typ I IFN-Antwort hinaus, eine kritische Rolle der ADAR1-Funktion auf die Differenzierung von bestimmten cDCs in vitro sowie in vivo aufgezeigt. In vitro blieb in ADAR1-defizienten GM-CSF-Kulturen die Differenzierung zu mDCs vollständig aus, während in vivo die CD103-positive cDC-Zellpopulation in verschiedenen peripheren Organen konditionell ADAR1-defizienter Mäuse nicht detektiert werden konnte. Da sowohl die in vitro generierten mDCs als auch die CD103-positiven cDC-Population in vivo in Abhängigkeit von der GM-CSF-Signalgebung stehen, liegt ein durch die ADAR1-Defizienz-vermittelter Defekt dieser Signalgebung nahe. Weiterführende Experimente werden dies sowie einen möglichen Zusammenhang der dysregulierten cDC-Differenzierung mit den in Makrophagen beobachteten erhöhten Typ I IFN-Signatur klären müssen.
Bibliographie / References
- Clausen, B. E., C. Burkhardt, et al. (1999). "Conditional gene targeting in macrophages and granulocytes using LysMcre mice." Transgenic Res 8(4): 265-77.
- Strahle, L., D. Garcin, et al. (2006). "Sendai virus defective-interfering genomes and the activa- tion of interferon-beta." Virology 351(1): 101-11.
- Hertzog, P. J. (2012). "Overview. Type I interferons as primers, activators and inhibitors of innate and adaptive immune responses." Immunol Cell Biol 90(5): 471-3.
- Fleetwood, A. J., H. Dinh, et al. (2009). "GM-CSF-and M-CSF-dependent macrophage pheno- types display differential dependence on type I interferon signaling." J Leukoc Biol 86(2): 411-21.
- Levanon, E. Y., E. Eisenberg, et al. (2004). "Systematic identification of abundant A-to-I editing sites in the human transcriptome." Nat Biotechnol 22(8): 1001-5.
- Lehmann, K. A. and B. L. Bass (1999). "The importance of internal loops within RNA substrates of ADAR1." J Mol Biol 291(1): 1-13.
- Hoebe, K., X. Du, et al. (2003). "Identification of Lps2 as a key transducer of MyD88- independent TIR signalling." Nature 424(6950): 743-8.
- Akira, S., H. Isshiki, et al. (1992). "Regulation of expression of the interleukin 6 gene: structure and function of the transcription factor NF-IL6." Ciba Found Symp 167: 47-62; discussion 62-7.
- Zhan, Y., E. M. Carrington, et al. (2011). "GM-CSF increases cross-presentation and CD103 expression by mouse CD8(+) spleen dendritic cells." Eur J Immunol 41(9): 2585-95.
- Jin, Y., W. Zhang, et al. (2009). "Origins and evolution of ADAR-mediated RNA editing." IUBMB Life 61(6): 572-8.
- Liu, G. and H. Yang (2013). "Modulation of macrophage activation and programming in im- munity." J Cell Physiol 228(3): 502-12.
- Lei, M., Y. Liu, et al. (1998). "Adenovirus VAI RNA antagonizes the RNA-editing activity of the ADAR adenosine deaminase." Virology 245(2): 188-96.
- Zhang, Q., C. M. Zmasek, et al. (2010). "Domain architecture evolution of pattern-recognition receptors." Immunogenetics 62(5): 263-72.
- Hansen, J. D., L. N. Vojtech, et al. (2011). "Sensing disease and danger: a survey of vertebrate PRRs and their origins." Dev Comp Immunol 35(9): 886-97.
- Abdelsadik, A. and A. Trad (2011). "Toll-like receptors on the fork roads between innate and adaptive immunity." Human Immunology 72(12): 1188-1193.
- Hamm, S., E. Latz, et al. (2010). "Alternating 2'-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist." Immunobiology 215(7): 559-69.
- An, H., W. Zhao, et al. (2006). "SHP-2 phosphatase negatively regulates the TRIF adaptor pro- tein-dependent type I interferon and proinflammatory cytokine production." Immunity 25(6): 919-28.
- Athanasiadis, A., D. Placido, et al. (2005). "The crystal structure of the Zbeta domain of the RNA-editing enzyme ADAR1 reveals distinct conserved surfaces among Z-domains." J Mol Biol 351(3): 496-507.
- Steele, E. J. (2009). "Mechanism of somatic hypermutation: critical analysis of strand biased mutation signatures at A:T and G:C base pairs." Mol Immunol 46(3): 305-20.
- Peng, P. L., X. Zhong, et al. (2006). "ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia." Neuron 49(5): 719- 33.
- Stefl, R., M. Xu, et al. (2006). "Structure and specific RNA binding of ADAR2 double-stranded RNA binding motifs." Structure 14(2): 345-55.
- Sakaguchi, S., H. Negishi, et al. (2003). "Essential role of IRF-3 in lipopolysaccharide-induced interferon-beta gene expression and endotoxin shock." Biochem Biophys Res Commun 306(4): 860-6.
- George, C. X. and C. E. Samuel (1999). "Characterization of the 5'-flanking region of the human RNA-specific adenosine deaminase ADAR1 gene and identification of an interferon- inducible ADAR1 promoter." Gene 229(1-2): 203-13.
- Reenan, R. A., C. J. Hanrahan, et al. (2000). "The mle(napts) RNA helicase mutation in drosoph- ila results in a splicing catastrophe of the para Na+ channel transcript in a region of RNA editing." Neuron 25(1): 139-49.
- Das, A. K. and G. G. Carmichael (2007). "ADAR editing wobbles the microRNA world." ACS Chem Biol 2(4): 217-20.
- Stanley, E. R., D. M. Chen, et al. (1978). "Induction of macrophage production and prolifera- tion by a purified colony stimulating factor." Nature 274(5667): 168-70.
- Klein, L., M. Hinterberger, et al. (2009). "Antigen presentation in the thymus for positive selec- tion and central tolerance induction." Nat Rev Immunol 9(12): 833-44.
- Hsieh, C. S., H. M. Lee, et al. (2012). "Selection of regulatory T cells in the thymus." Nat Rev Immunol 12(3): 157-67.
- Jiang, Z., T. W. Mak, et al. (2004). "Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta." Proc Natl Acad Sci U S A 101(10): 3533-8.
- Liu, Y. and C. E. Samuel (1999). "Editing of glutamate receptor subunit B pre-mRNA by splice- site variants of interferon-inducible double-stranded RNA-specific adenosine deaminase ADAR1." J Biol Chem 274(8): 5070-7.
- Wang, Q., M. Miyakoda, et al. (2004). "Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene." J Biol Chem 279(6): 4952-61.
- Hartner, J. C., C. Schmittwolf, et al. (2004). "Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1." J Biol Chem 279(6): 4894-902.
- George, C. X., M. V. Wagner, et al. (2005). "Expression of interferon-inducible RNA adenosine deaminase ADAR1 during pathogen infection and mouse embryo development involves tissue-selective promoter utilization and alternative splicing." J Biol Chem 280(15): 15020-8.
- Chilibeck, K. A., T. Wu, et al. (2006). "FRET analysis of in vivo dimerization by RNA-editing en- zymes." J Biol Chem 281(24): 16530-5.
- McAllister, C. S. and C. E. Samuel (2009). "The RNA-activated protein kinase enhances the induction of interferon-beta and apoptosis mediated by cytoplasmic RNA sensors." J Biol Chem 284(3): 1644-51.
- Hiscott, J. (2007). "Triggering the innate antiviral response through IRF-3 activation." J Biol Chem 282(21): 15325-9.
- Isaacs, A. and J. Lindenmann (1957). "Virus interference. I. The interferon." Proc R Soc Lond B Biol Sci 147(927): 258-67.
- Doe, C. M., D. Relkovic, et al. (2009). "Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour." Hum Mol Genet 18(12): 2140-8.
- Kawai, T. and S. Akira (2009). "The roles of TLRs, RLRs and NLRs in pathogen recognition." Int Immunol 21(4): 317-37.
- Ran, Y., T. T. Liu, et al. (2011). "SENP2 negatively regulates cellular antiviral response by deSUMOylating IRF3 and conditioning it for ubiquitination and degradation." J Mol Cell Biol 3(5): 283-92.
- Koeris, M., L. Funke, et al. (2005). "Modulation of ADAR1 editing activity by Z-RNA in vitro." Nucleic Acids Res 33(16): 5362-70.
- Bartlett, D. W. and M. E. Davis (2006). "Insights into the kinetics of siRNA-mediated gene si- lencing from live-cell and live-animal bioluminescent imaging." Nucleic Acids Research 34(1): 322-333.
- Kawahara, Y., M. Megraw, et al. (2008). "Frequency and fate of microRNA editing in human brain." Nucleic Acids Res 36(16): 5270-80.
- Ha, S. C., J. Choi, et al. (2009). "The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ alpha(ADAR1)." Nucleic Acids Res 37(2): 629-37.
- Enstero, M., C. Daniel, et al. (2009). "Recognition and coupling of A-to-I edited sites are de- termined by the tertiary structure of the RNA." Nucleic Acids Res 37(20): 6916-26.
- Wahlstedt, H., C. Daniel, et al. (2009). "Large-scale mRNA sequencing determines global regu- lation of RNA editing during brain development." Genome Res 19(6): 978-86.
- Bahn, J. H., J. H. Lee, et al. (2011). "Accurate identification of A-to-I RNA editing in human by transcriptome sequencing." Genome Res 22(1): 142-50.
- Blow, M., P. A. Futreal, et al. (2004). "A survey of RNA editing in human brain." Genome Res 14(12): 2379-87.
- Paz, N., E. Y. Levanon, et al. (2007). "Altered adenosine-to-inosine RNA editing in human can- cer." Genome Res 17(11): 1586-95.
- Hu, X., S. D. Chakravarty, et al. (2008). "Regulation of interferon and Toll-like receptor signal- ing during macrophage activation by opposing feedforward and feedback inhibition mechanisms." Immunol Rev 226: 41-56.
- Qian, C. and X. Cao (2012). "Regulation of Toll-like receptor signaling pathways in innate im- mune responses." Ann N Y Acad Sci 1283: 67-74.
- Wang, Q., J. Khillan, et al. (2000). "Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis." Science 290(5497): 1765-8.
- Shtrichman, R., D. M. Heithoff, et al. (2002). "Tissue selectivity of interferon-stimulated gene expression in mice infected with Dam(+) versus Dam(-) Salmonella enterica serovar Typhimurium strains." Infect Immun 70(10): 5579-88.
- Patterson, J. B. and C. E. Samuel (1995). "Expression and regulation by interferon of a double- stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase." Mol Cell Biol 15(10): 5376-88.
- O'Connell, M. A., S. Krause, et al. (1995). "Cloning of cDNAs encoding mammalian double- stranded RNA-specific adenosine deaminase." Mol Cell Biol 15(3): 1389-97.
- Moore, A. J. and M. K. Anderson (2013). "Dendritic cell development: a choose-your-own- adventure story." Adv Hematol 2013: 949513.
- Yang, C. H., J. Yue, et al. (2010). "IFN induces miR-21 through a signal transducer and activator of transcription 3-dependent pathway as a suppressive negative feedback on IFN- induced apoptosis." Cancer Res 70(20): 8108-16.
- Desterro, J. M., L. P. Keegan, et al. (2003). "Dynamic association of RNA-editing enzymes with the nucleolus." J Cell Sci 116(Pt 9): 1805-18.
- Solomon, O., S. Oren, et al. (2013). "Global regulation of alternative splicing by adenosine deaminase acting on RNA (ADAR)." Rna 19(5): 591-604.
- Luciano, D. J., H. Mirsky, et al. (2004). "RNA editing of a miRNA precursor." Rna 10(8): 1174-7.
- Holmes, C. and W. L. Stanford (2007). "Concise review: stem cell antigen-1: expression, func- tion, and enigma." Stem Cells 25(6): 1339-47.
- Sathe, P., J. Pooley, et al. (2011). "The acquisition of antigen cross-presentation function by newly formed dendritic cells." J Immunol 186(9): 5184-92.
- Ahmed, S., A. Maratha, et al. (2013). "TRIF-mediated TLR3 and TLR4 signaling is negatively regulated by ADAM15." J Immunol 190(5): 2217-28.
- Kaiser, W. J. and M. K. Offermann (2005). "Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif." J Immunol 174(8): 4942-52.
- Bibeau-Poirier, A., S. P. Gravel, et al. (2006). "Involvement of the IkappaB kinase (IKK)-related kinases tank-binding kinase 1/IKKi and cullin-based ubiquitin ligases in IFN regulatory factor-3 degradation." J Immunol 177(8): 5059-67.
- Fleetwood, A. J., T. Lawrence, et al. (2007). "Granulocyte-macrophage colony-stimulating fac- tor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation." J Immunol 178(8): 5245-52.
- Higgs, R., J. Ni Gabhann, et al. (2008). "The E3 ubiquitin ligase Ro52 negatively regulates IFN- beta production post-pathogen recognition by polyubiquitin-mediated degradation of IRF3." J Immunol 181(3): 1780-6.
- Blow, M. J., R. J. Grocock, et al. (2006). "RNA editing of human microRNAs." Genome Biol 7(4): R27.
- Chen, L., Y. Li, et al. (2013). "Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma." Nat Med 19(2): 209-16.
- Melcher, T., S. Maas, et al. (1996). "RED2, a brain-specific member of the RNA-specific adeno- sine deaminase family." J Biol Chem 271(50): 31795-8.
- Melcher, T., S. Maas, et al. (1996). "A mammalian RNA editing enzyme." Nature 379(6564): 460-4.
- Higuchi, M., S. Maas, et al. (2000). "Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2." Nature 406(6791): 78-81.
- Sedger, L. M. (2013). "microRNA control of interferons and interferon induced anti-viral activi- ty." Mol Immunol 56(4): 781-793.
- Netea, M. G., C. Wijmenga, et al. (2012). "Genetic variation in Toll-like receptors and disease susceptibility." Nat Immunol 13(6): 535-42.
- Beghini, A., C. B. Ripamonti, et al. (2000). "RNA hyperediting and alternative splicing of hema- topoietic cell phosphatase (PTPN6) gene in acute myeloid leukemia." Hum Mol Genet 9(15): 2297-304.
- Meraz, M. A., J. M. White, et al. (1996). "Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway." Cell 84(3): 431- 42.
- Cavlar, T., A. Ablasser, et al. (2012). "Induction of type I IFNs by intracellular DNA-sensing pathways." Immunol Cell Biol 90(5): 474-82.
- Suhara, W., M. Yoneyama, et al. (2000). "Analyses of virus-induced homomeric and heteromeric protein associations between IRF-3 and coactivator CBP/p300." J Biochem 128(2): 301-7.
- Elco, C. P., J. M. Guenther, et al. (2005). "Analysis of genes induced by Sendai virus infection of mutant cell lines reveals essential roles of interferon regulatory factor 3, NF-kappaB, and interferon but not toll-like receptor 3." J Virol 79(7): 3920-9.
- Orlandi, C., A. Barbon, et al. (2012). "Activity regulation of adenosine deaminases acting on RNA (ADARs)." Mol Neurobiol 45(1): 61-75.
- Abb. IV.1 Sekundärantikörper-Kontrollen für Immunfluoreszenz-Färbungen von IRF3 und IRF7 in Mak- rophagen nach Stimulation mit LPS oder SeV. ADAR1-defiziente (ADAR1 f7-9/f7-9
- Bass, B. L. and H. Weintraub (1987). "A developmentally regulated activity that unwinds RNA duplexes." Cell 48(4): 607-13.
- Die Sekundärantikörper-Kontrollen (2.AK) zeigten keine unspezifische Färbung. Repräsentativ für drei unabhängige Experimente.
- Cabanas, C. and F. Sanchez-Madrid (1999). "CD11c (leukocyte integrin CR4 alpha subunit)." J Biol Regul Homeost Agents 13(2): 134-6.
- Bedoui, S., P. G. Whitney, et al. (2009). "Cross-presentation of viral and self antigens by skin- derived CD103+ dendritic cells." Nat Immunol 10(5): 488-95.
- Yamamoto, M., S. Sato, et al. (2002). "Cutting edge: a novel Toll/IL-1 receptor domain- containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling." J Immunol 169(12): 6668-72.
- Wu, J., L. Sun, et al. (2013). "Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA." Science 339(6121): 826-30.
- Kato, H., O. Takeuchi, et al. (2006). "Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses." Nature 441(7089): 101-5.
- Marie, I., J. E. Durbin, et al. (1998). "Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7." Embo J 17(22): 6660-9.
- Sato, M., H. Suemori, et al. (2000). "Distinct and Essential Roles of Transcription Factors IRF-3 and IRF-7 in Response to Viruses for IFN-α/β Gene Induction." Immunity 13(4): 539- 548.
- Cenci, C., R. Barzotti, et al. (2008). "Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation." J Biol Chem 283(11): 7251-60.
- Matsumoto, M., S. Kikkawa, et al. (2002). "Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling." Biochem Biophys Res Commun 293(5): 1364-9.
- Liu, Y., C. X. George, et al. (1997). "Functionally distinct double-stranded RNA-binding domains associated with alternative splice site variants of the interferon-inducible double- stranded RNA-specific adenosine deaminase." J Biol Chem 272(7): 4419-28.
- Inaba, K., M. Inaba, et al. (1992). "Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor." J Exp Med 176(6): 1693-702.
- Brasel, K., T. De Smedt, et al. (2000). "Generation of murine dendritic cells from flt3-ligand- supplemented bone marrow cultures." Blood 96(9): 3029-39.
- Guo, J. J., Q. L. Li, et al. (2006). "Histone deacetylation is involved in activation of CXCL10 upon IFNgamma stimulation." Mol Cells 22(2): 163-7.
- Ishii, K. J., S. Koyama, et al. (2008). "Host innate immune receptors and beyond: making sense of microbial infections." Cell Host Microbe 3(6): 352-63.
- Wang, S., K. Wang, et al. (2013). "HSV-1 Serine/Threonine Kinase US3 Hyperphosphorylates IRF3 and Inhibits the IFN-beta production." J Virol.
- Tamura, T., P. Tailor, et al. (2005). "IFN regulatory factor-4 and -8 govern dendritic cell subset development and their functional diversity." J Immunol 174(5): 2573-81.
- Kishore, N., Q. K. Huynh, et al. (2002). "IKK-i and TBK-1 are enzymatically distinct from the homologous enzyme IKK-2: comparative analysis of recombinant human IKK-i, TBK-1, and IKK-2." J Biol Chem 277(16): 13840-7.
- Brownell, J., J. Wagoner, et al. (2013). "Independent, parallel pathways to CXCL10 induction in HCV-infected hepatocytes." J Hepatol.
- Gil, J. and M. Esteban (2000). "Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action." Apoptosis 5(2): 107-14.
- Janeway, C. A., Jr. and R. Medzhitov (2002). "Innate immune recognition." Annu Rev Immunol 20: 197-216.
- Honda, K. and T. Taniguchi (2006). "IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors." Nat Rev Immunol 6(9): 644-58.
- Murphy, K. (2011). Janeway`s Immunobiology. New York, Garland Science Taylor & Francis Group.
- Wen, Z., Z. Zhong, et al. (1995). "Maximal activation of transcription by statl and stat3 requires both tyrosine and serine phosphorylation." Cell 82(2): 241-250.
- LysMCre + ) oder ADAR1- kompetente (ADAR1 +/+ LysMCre + ) M-CSF-generierte Makrophagen wurden mit LPS [1 µg/ml] stimuliert, mit Sendai Virus (SeV) [2 MOI] infiziert oder unbehandelt belassen (Ctrl). Die Zellen wurden nur mit dem Fluoreszenz-markierten, sekundären Antikörper inkubiert (rot). Die Zellkerne wurden mit DAPI gegengefärbt (blau). Die Immunfluoreszenzen wurden mittels konfokaler Mikroskopie aufgenommen.
- Lim, L. P., N. C. Lau, et al. (2005). "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs." Nature 433(7027): 769-73.
- Kim, V. N. (2005). "MicroRNA biogenesis: coordinated cropping and dicing." Nat Rev Mol Cell Biol 6(5): 376-85.
- Keller, E. T., J. Wanagat, et al. (1996). "Molecular and cellular biology of interleukin-6 and its receptor." Front Biosci 1: d340-57.
- Behrendt, R. and A. Roers (2013). "Mouse models for Aicardi-Goutieres syndrome provide clues to the molecular pathogenesis of systemic autoimmunity." Clin Exp Immunol.
- Rice, G. I., P. R. Kasher, et al. (2013). "Mutations in ADAR1 cause Aicardi-Goutieres syndrome associated with a type I interferon signature." Nat Genet 44(11): 1243-8.
- Honda, K., T. Mizutani, et al. (2004). "Negative regulation of IFN-alpha/beta signaling by IFN regulatory factor 2 for homeostatic development of dendritic cells." Proc Natl Acad Sci U S A 101(8): 2416-21.
- Hoopengardner, B., T. Bhalla, et al. (2003). "Nervous system targets of RNA editing identified by comparative genomics." Science 301(5634): 832-6.
- Reich, N. C. (2002). "Nuclear/cytoplasmic localization of IRFs in response to viral infection or interferon stimulation." J Interferon Cytokine Res 22(1): 103-9.
- Servant, M. J., B. Tenoever, et al. (2002). "Overlapping and distinct mechanisms regulating IRF- 3 and IRF-7 function." J Interferon Cytokine Res 22(1): 49-58.
- Hoffmann, J. A., F. C. Kafatos, et al. (1999). "Phylogenetic perspectives in innate immunity." Science 284(5418): 1313-8.
- Sato, M., N. Hata, et al. (1998). "Positive feedback regulation of type I IFN genes by the IFN- inducible transcription factor IRF-7." FEBS Lett 441(1): 106-10.
- Kim, U., T. L. Garner, et al. (1994). "Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts." J Biol Chem 269(18): 13480-9.
- Bauer, S., S. Pigisch, et al. (2008). "Recognition of nucleic acid and nucleic acid analogs by Toll- like receptors 7, 8 and 9." Immunobiology 213(3-4): 315-28.
- Kawahara, Y., B. Zinshteyn, et al. (2007). "Redirection of silencing targets by adenosine-to- inosine editing of miRNAs." Science 315(5815): 1137-40.
- Halloran, P. F., J. Urmson, et al. (1989). "Regulation of MHC expression in vivo. II. IFN- alpha/beta inducers and recombinant IFN-alpha modulate MHC antigen expression in mouse tissues." J Immunol 142(12): 4241-7.
- Burns, C. M., H. Chu, et al. (1997). "Regulation of serotonin-2C receptor G-protein coupling by RNA editing." Nature 387(6630): 303-8.
- Cho, D. S., W. Yang, et al. (2003). "Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA." J Biol Chem 278(19): 17093-102.
- Wang, Q. (2011). "RNA editing catalyzed by ADAR1 and its function in mammalian cells." Bio- chemistry (Mosc) 76(8): 900-11.
- Higuchi, M., F. N. Single, et al. (1993). "RNA editing of AMPA receptor subunit GluR-B: a base- paired intron-exon structure determines position and efficiency." Cell 75(7): 1361-70.
- Polson, A. G., B. L. Bass, et al. (1996). "RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase." Nature 380(6573): 454-6.
- Lee, M. S. and Y. J. Kim (2007). "Signaling pathways downstream of pattern-recognition recep- tors and their cross talk." Annu Rev Biochem 76: 447-80.
- Hemmi, H., T. Kaisho, et al. (2002). "Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway." Nat Immunol 3(2): 196-200.
- Durbin, J. E., R. Hackenmiller, et al. (1996). "Targeted disruption of the mouse Stat1 gene re- sults in compromised innate immunity to viral disease." Cell 84(3): 443-50.
- Lemaitre, B., E. Nicolas, et al. (1996). "The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults." Cell 86(6): 973-83.
- Zhang, Z. and G. G. Carmichael (2001). "The fate of dsRNA in the nucleus: a p54(nrb)- containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs." Cell 106(4): 465-75.
- Carty, M., R. Goodbody, et al. (2006). "The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling." Nat Immunol 7(10): 1074-81.
- Tamura, T., H. Yanai, et al. (2008). "The IRF family transcription factors in immunity and oncogenesis." Annu Rev Immunol 26: 535-84.
- Kawai, T. and S. Akira (2010). "The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors." Nat Immunol 11(5): 373-84.
- Decker, T., M. Muller, et al. (2005). "The yin and yang of type I interferon activity in bacterial infection." Nat Rev Immunol 5(9): 675-87.
- Brown, B. A., 2nd, K. Lowenhaupt, et al. (2000). "The zalpha domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA." Proc Natl Acad Sci U S A 97(25): 13532-6.
- Kawai, T. and S. Akira (2011). "Toll-like Receptors and Their Crosstalk with Other Innate Recep- tors in Infection and Immunity." Immunity 34(5): 637-650.
- Akira, S. and K. Takeda (2004). "Toll-like receptor signalling." Nat Rev Immunol 4(7): 499-511.
- Kagan, J. C., T. Su, et al. (2008). "TRAM couples endocytosis of Toll-like receptor 4 to the in- duction of interferon-beta." Nat Immunol 9(4): 361-8.
- Sharma, S., B. R. tenOever, et al. (2003). "Triggering the interferon antiviral response through an IKK-related pathway." Science 300(5622): 1148-51.
- Honda, K., A. Takaoka, et al. (2006). "Type I Inteferon Gene Induction by the Interferon Regu- latory Factor Family of Transcription Factors." Immunity 25(3): 349-360.
- Trinchieri, G. (2010). "Type I interferon: friend or foe?" J Exp Med 207(10): 2053-63.
- Lin, R., C. Heylbroeck, et al. (1998). "Virus-dependent phosphorylation of the IRF-3 transcrip- tion factor regulates nuclear translocation, transactivation potential, and proteasome- mediated degradation." Mol Cell Biol 18(5): 2986-96.
- Oldenburg, M., A. Kruger, et al. (2012). "TLR13 recognizes bacterial 23S rRNA devoid of eryth- romycin resistance-forming modification." Science 337(6098): 1111-5.
- Tamassia, N., F. Calzetti, et al. (2007). "Molecular mechanisms underlying the synergistic in- duction of CXCL10 by LPS and IFN-gamma in human neutrophils." Eur J Immunol 37(9): 2627-34.
- Volz, T., S. Kaesler, et al. (2012). "Innate immune sensing 2.0 -from linear activation pathways to fine tuned and regulated innate immune networks." Exp Dermatol 21(1): 61-9.
- Fritz, J., A. Strehblow, et al. (2009). "RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1." Mol Cell Biol 29(6): 1487-97.
- Henri, S., L. F. Poulin, et al. (2012). "CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells." J Exp Med 207(1): 189-206.
- Li, J. B., E. Y. Levanon, et al. (2009). "Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing." Science 324(5931): 1210-3.
- Fitzgerald, K. A., S. M. McWhirter, et al. (2003). "IKKepsilon and TBK1 are essential compo- nents of the IRF3 signaling pathway." Nat Immunol 4(5): 491-6.
- Carpenter, S. and L. A. O'Neill (2009). "Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins." Biochem J 422(1): 1-10.
- Akiyama, M. K. a. M. (2013). "Dyschromatosis Symmetrica Hereditaria and RNA Editing En- zyme." Current Genetics in Dermatology.
- Samuel, C. E. (1993). "The eIF-2 alpha protein kinases, regulators of translation in eukaryotes from yeasts to humans." J Biol Chem 268(11): 7603-6.
- Lin, R., Y. Mamane, et al. (2000). "Multiple regulatory domains control IRF-7 activity in re- sponse to virus infection." J Biol Chem 275(44): 34320-7.
- Yang, H., C. H. Lin, et al. (2003). "Interferon regulatory factor-7 synergizes with other tran- scription factors through multiple interactions with p300/CBP coactivators." J Biol Chem 278(18): 15495-504.
- McCoy, C. E., S. Carpenter, et al. (2008). "Glucocorticoids inhibit IRF3 phosphorylation in re- sponse to Toll-like receptor-3 and -4 by targeting TBK1 activation." J Biol Chem 283(21): 14277-85.
- Brawand, P., D. R. Fitzpatrick, et al. (2002). "Murine plasmacytoid pre-dendritic cells generat- ed from Flt3 ligand-supplemented bone marrow cultures are immature APCs." J Immunol 169(12): 6711-9.
- Rula, E. Y., A. H. Lagrange, et al. (2008). "Developmental modulation of GABA(A) receptor function by RNA editing." J Neurosci 28(24): 6196-201.
- Tan, B. Z., H. Huang, et al. (2009). "Dynamic regulation of RNA editing of ion channels and receptors in the mammalian nervous system." Mol Brain 2: 13.
- Alexopoulou, L., A. C. Holt, et al. (2001). "Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3." Nature 413(6857): 732-8.
- Hartner, J. C., C. R. Walkley, et al. (2009). "ADAR1 is essential for the maintenance of hemato- poiesis and suppression of interferon signaling." Nat Immunol 10(1): 109-15.
- Vitali, P. and A. D. Scadden (2010). "Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis." Nat Struct Mol Biol 17(9): 1043-50.
- Lei, C. Q., Y. Zhang, et al. (2013). "FoxO1 negatively regulates cellular antiviral response by promoting degradation of IRF3." J Biol Chem 288(18): 12596-604.
- Scadden, A. D. and C. W. Smith (2001). "RNAi is antagonized by A-->I hyper-editing." EMBO Rep 2(12): 1107-11.
- Nie, Y., L. Ding, et al. (2005). "ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing." Mol Cell Biol 25(16): 6956-63.
- Caillaud, A., A. G. Hovanessian, et al. (2005). "Regulatory serine residues mediate phosphory- lation-dependent and phosphorylation-independent activation of interferon regulatory factor 7." J Biol Chem 280(18): 17671-7.
- Desterro, J. M., L. P. Keegan, et al. (2005). "SUMO-1 modification alters ADAR1 editing activi- ty." Mol Biol Cell 16(11): 5115-26.
- George, C. X. and C. E. Samuel (1999). "Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible." Proc Natl Acad Sci U S A 96(8): 4621-6.
- Prakash, A. and D. E. Levy (2006). "Regulation of IRF7 through cell type-specific protein stabil- ity." Biochem Biophys Res Commun 342(1): 50-6.
- Gallo, A., L. P. Keegan, et al. (2003). "An ADAR that edits transcripts encoding ion channel sub- units functions as a dimer." Embo J 22(13): 3421-30.
- Bass, B. L. (2002). "RNA editing by adenosine deaminases that act on RNA." Annu Rev Biochem 71: 817-46.
- Kawahara, Y., B. Zinshteyn, et al. (2007). "RNA editing of the microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex." EMBO Rep 8(8): 763-9.
- Caton, M. L., M. R. Smith-Raska, et al. (2007). "Notch-RBP-J signaling controls the homeostasis of CD8-dendritic cells in the spleen." J Exp Med 204(7): 1653-64.
- Agranat, L., O. Raitskin, et al. (2008). "The editing enzyme ADAR1 and the mRNA surveillance protein hUpf1 interact in the cell nucleus." Proc Natl Acad Sci U S A 105(13): 5028-33.
- Herbert, A., J. Alfken, et al. (1997). "A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase." Proc Natl Acad Sci U S A 94(16): 8421-6.
- Lai, F., C. X. Chen, et al. (1997). "Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases." Mol Cell Biol 17(5): 2413-24.
- Kato, H., O. Takeuchi, et al. (2008). "Length-dependent recognition of double-stranded ribo- nucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5." J Exp Med 205(7): 1601-10.
- George, C. X., S. Das, et al. (2008). "Organization of the mouse RNA-specific adenosine deaminase Adar1 gene 5'-region and demonstration of STAT1-independent, STAT2- dependent transcriptional activation by interferon." Virology 380(2): 338-43.
- Pandey, A. K., Y. Yang, et al. (2009). "NOD2, RIP2 and IRF5 play a critical role in the type I inter- feron response to Mycobacterium tuberculosis." PLoS Pathog 5(7): e1000500.
- XuFeng, R., M. J. Boyer, et al. (2009). "ADAR1 is required for hematopoietic progenitor cell survival via RNA editing." Proc Natl Acad Sci U S A 106(42): 17763-8.
- Goubau, D., R. Romieu-Mourez, et al. (2009). "Transcriptional re-programming of primary macrophages reveals distinct apoptotic and anti-tumoral functions of IRF-3 and IRF-7." Eur J Immunol 39(2): 527-40.
- McAllister, C. S., A. M. Toth, et al. (2010). "Mechanisms of protein kinase PKR-mediated ampli- fication of beta interferon induction by C protein-deficient measles virus." J Virol 84(1): 380-6.
- Sauer, B. and N. Henderson (1988). "Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1." Proc Natl Acad Sci U S A 85(14): 5166-70.
- Watanabe, T., N. Asano, et al. (2010). "NOD1 contributes to mouse host defense against Heli- cobacter pylori via induction of type I IFN and activation of the ISGF3 signaling path- way." J Clin Invest 120(5): 1645-62.
- King, I. L., M. A. Kroenke, et al. (2010). "GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization." J Exp Med 207(5): 953-61.
- Wagner, R. W., J. E. Smith, et al. (1989). "A double-stranded RNA unwinding activity introduc- es structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs." Proc Natl Acad Sci U S A 86(8): 2647-51.
- Chattopadhyay, S., J. T. Marques, et al. (2010). "Viral apoptosis is induced by IRF-3-mediated activation of Bax." Embo J 29(10): 1762-73.
- Iizasa, H. and K. Nishikura (2009). "A new function for the RNA-editing enzyme ADAR1." Nat Immunol 10(1): 16-8.
- Mombereau, C., Y. Kawahara, et al. (2009). "Functional relevance of serotonin 2C receptor mRNA editing in antidepressant-and anxiety-like behaviors." Neuropharmacology 59(6): 468-73.
- Yang, W., Q. Wang, et al. (2005). "ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells." J Biol Chem 280(5): 3946-53.
- Yang, W., T. P. Chendrimada, et al. (2006). "Modulation of microRNA processing and expres- sion through RNA editing by ADAR deaminases." Nat Struct Mol Biol 13(1): 13-21.
- Nishikura, K. (2010). "Functions and regulation of RNA editing by ADAR deaminases." Annu Rev Biochem 79: 321-49.
- Nishikura, K. (2006). "Editor meets silencer: crosstalk between RNA editing and RNA interfer- ence." Nat Rev Mol Cell Biol 7(12): 919-31.
- Valente, L. and K. Nishikura (2007). "RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions." J Biol Chem 282(22): 16054-61.
- Iizasa, H., B. E. Wulff, et al. (2010). "Editing of Epstein-Barr virus-encoded BART6 microRNAs controls their dicer targeting and consequently affects viral latency." J Biol Chem 285(43): 33358-70.
- Skaug, B. and Z. J. Chen (2010). "Emerging role of ISG15 in antiviral immunity." Cell 143(2): 187-90.
- George, C. X., Z. Gan, et al. (2011). "Adenosine deaminases acting on RNA, RNA editing, and interferon action." J Interferon Cytokine Res 31(1): 99-117.
- Eggington, J. M., T. Greene, et al. (2011). "Predicting sites of ADAR editing in double-stranded RNA." Nat Commun 2: 319.
- Unterholzner, L., S. E. Keating, et al. (2010). "IFI16 is an innate immune sensor for intracellular DNA." Nat Immunol 11(11): 997-1004.
- Kushwah, R. and J. Hu (2011). "Complexity of dendritic cell subsets and their function in the host immune system." Immunology 133(4): 409-19.
- Akira, S. (2011). "Innate immunity and adjuvants." Philos Trans R Soc Lond B Biol Sci 366(1579): 2748-55.
- Pfaller, C. K., Z. Li, et al. (2011). "Protein kinase PKR and RNA adenosine deaminase ADAR1: new roles for old players as modulators of the interferon response." Curr Opin Immunol 23(5): 573-82.
- Marcucci, R., J. Brindle, et al. (2011). "Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects." Embo J 30(20): 4211-22.
- Barraud, P. and F. H. Allain (2011). "ADAR proteins: double-stranded RNA and Z-DNA binding domains." Curr Top Microbiol Immunol 353: 35-60.
- Levy, D. E., I. J. Marie, et al. (2011). "Induction and function of type I and III interferon in re- sponse to viral infection." Curr Opin Virol 1(6): 476-86.
- Newton, K. and V. M. Dixit (2012). "Signaling in innate immunity and inflammation." Cold Spring Harb Perspect Biol 4(3).
- Smale, S. T. (2012). "Transcriptional regulation in the innate immune system." Curr Opin Immunol 24(1): 51-7.
- Field, A. K., A. A. Tytell, et al. (1967). "Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes." Proc Natl Acad Sci U S A 58(3): 1004-10.
- Bryant, C. E. and T. P. Monie (2012). "Mice, men and the relatives: cross-species studies un- derpin innate immunity." Open Biol 2(4): 120015.
- Shtrichman, R., I. Germanguz, et al. (2012). "Altered A-to-I RNA editing in human embryogen- esis." PLoS One 7(7): e41576.
- Kagan, J. C. (2012). "Defining the subcellular sites of innate immune signal transduction." Trends Immunol 33(9): 442-8.
- Raitskin, O., D. S. Cho, et al. (2001). "RNA editing activity is associated with splicing factors in lnRNP particles: The nuclear pre-mRNA processing machinery." Proc Natl Acad Sci U S A 98(12): 6571-6.
- Greter, M., J. Helft, et al. (2012). "GM-CSF controls nonlymphoid tissue dendritic cell homeo- stasis but is dispensable for the differentiation of inflammatory dendritic cells." Immuni- ty 36(6): 1031-46.
- Cervantes, J. L., B. Weinerman, et al. (2012). "TLR8: the forgotten relative revindicated." Cell Mol Immunol 9(6): 434-8.
- Akira, S. (2009). "Pathogen recognition by innate immunity and its signaling." Proc Jpn Acad Ser B Phys Biol Sci 85(4): 143-56.
- Jiang, Q., L. A. Crews, et al. (2012). "ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia." Proc Natl Acad Sci U S A 110(3): 1041-6.
- Liu, G. and E. Abraham (2013). "MicroRNAs in immune response and macrophage polariza- tion." Arterioscler Thromb Vasc Biol 33(2): 170-7.
- Steinman, R. A., Q. Yang, et al. (2012). "Deletion of the RNA-editing enzyme ADAR1 causes regression of established chronic myelogenous leukemia in mice." Int J Cancer 132(8): 1741-50.
- Shimokawa, T., M. F. Rahman, et al. (2013). "RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling." RNA Biol 10(2): 321-33.
- Koblansky, A. A., D. Jankovic, et al. (2013). "Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii." Immunity 38(1): 119-30.
- Ota, H., M. Sakurai, et al. (2013). "ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing." Cell 153(3): 575-89.
- Colonna, M., G. Trinchieri, et al. (2004). "Plasmacytoid dendritic cells in immunity." Nat Immunol 5(12): 1219-26.
- Ichikawa, E., S. Hida, et al. (2004). "Defective development of splenic and epidermal CD4+ dendritic cells in mice deficient for IFN regulatory factor-2." Proc Natl Acad Sci U S A 101(11): 3909-14.
- Merad, M., P. Sathe, et al. (2013). "The dendritic cell lineage: ontogeny and function of den- dritic cells and their subsets in the steady state and the inflamed setting." Annu Rev Immunol 31: 563-604.
- Sun, L., J. Wu, et al. (2013). "Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway." Science 339(6121): 786-91.
- Samuel, C. E. (2011). "ADARs: viruses and innate immunity." Curr Top Microbiol Immunol 353: 163-95.
- Au, W. C., P. A. Moore, et al. (1995). "Identification of a member of the interferon regulatory factor family that binds to the interferon-stimulated response element and activates expression of interferon-induced genes." Proc Natl Acad Sci U S A 92(25): 11657-61.
- Kim, U., Y. Wang, et al. (1994). "Molecular cloning of cDNA for double-stranded RNA adeno- sine deaminase, a candidate enzyme for nuclear RNA editing." Proc Natl Acad Sci U S A 91(24): 11457-61.
- Nishikura, K., C. Yoo, et al. (1991). "Substrate specificity of the dsRNA unwinding/modifying activity." Embo J 10(11): 3523-32.
- Matsusaka, T., K. Fujikawa, et al. (1993). "Transcription factors NF-IL6 and NF-kappa B syner- gistically activate transcription of the inflammatory cytokines, interleukin 6 and inter- leukin 8." Proc Natl Acad Sci U S A 90(21): 10193-7.
- Schindler, C., X. Y. Fu, et al. (1992). "Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha." Proc Natl Acad Sci U S A 89(16): 7836-9.
- Bauer, S., C. J. Kirschning, et al. (2001). "Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition." Proc Natl Acad Sci U S A 98(16): 9237-42.
- Kumar, K. P., K. M. McBride, et al. (2000). "Regulated nuclear-cytoplasmic localization of inter- feron regulatory factor 3, a subunit of double-stranded RNA-activated factor 1." Mol Cell Biol 20(11): 4159-68.
- Marie, I., E. Smith, et al. (2000). "Phosphorylation-induced dimerization of interferon regula- tory factor 7 unmasks DNA binding and a bipartite transactivation domain." Mol Cell Biol 20(23): 8803-14.
- Poulsen, H., J. Nilsson, et al. (2001). "CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain." Mol Cell Biol 21(22): 7862-71.
- Gerber, A., M. A. O'Connell, et al. (1997). "Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette." Rna 3(5): 453-63.
- Chen, C. X., D. S. Cho, et al. (2000). "A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single-and double-stranded RNA binding domains." Rna 6(5): 755-67.
- Rebagliati, M. R. and D. A. Melton (1987). "Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity." Cell 48(4): 599-605.
- Bass, B. L. and H. Weintraub (1988). "An unwinding activity that covalently modifies its dou- ble-stranded RNA substrate." Cell 55(6): 1089-98.
- Werry, T. D., R. Loiacono, et al. (2008). "RNA editing of the serotonin 5HT2C receptor and its effects on cell signalling, pharmacology and brain function." Pharmacol Ther 119(1): 7- 23.
- Koj, A. (1996). "Initiation of acute phase response and synthesis of cytokines." Biochim Biophys Acta 1317(2): 84-94.
- Haas, T., J. Metzger, et al. (2008). "The DNA sugar backbone 2' deoxyribose determines toll- like receptor 9 activation." Immunity 28(3): 315-23.
- Kumar, H., T. Kawai, et al. (2011). "Pathogen recognition by the innate immune system." Int Rev Immunol 30(1): 16-34.
- Kingston, D., M. A. Schmid, et al. (2009). "The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis." Blood 114(4): 835-43.
- Takahashi, M., T. Yoshimoto, et al. (2006). "Loss of function of the candidate tumor suppres- sor prox1 by RNA mutation in human cancer cells." Neoplasia 8(12): 1003-10.
- Athanasiadis, A., A. Rich, et al. (2004). "Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome." PLoS Biol 2(12): e391.
- Hackstein, H., A. Wachtendorf, et al. (2012). "Heterogeneity of respiratory dendritic cell sub- sets and lymphocyte populations in inbred mouse strains." Respir Res 13: 94.
- Scaffidi, C., I. Schmitz, et al. (1999). "Differential modulation of apoptosis sensitivity in CD95 type I and type II cells." J Biol Chem 274(32): 22532-8.
- Yang, K., H. X. Shi, et al. (2009). "TRIM21 is essential to sustain IFN regulatory factor 3 activa- tion during antiviral response." J Immunol 182(6): 3782-92.
- Ziegler-Heitbrock, H. W. (1995). "Molecular mechanism in tolerance to lipopolysaccharide." J Inflamm 45(1): 13-26. ANHANG 156 IV. ANHANG