Publikationsserver der Universitätsbibliothek Marburg

Titel:Strategies for Genome-Wide Association Analyses of Raw Copy Number Variation Data
Autor:Jarick, Ivonne
Weitere Beteiligte: Schäfer, Helmut (Prof. Dr.)
Veröffentlicht:2013
URI:https://archiv.ub.uni-marburg.de/diss/z2013/0732
DOI: https://doi.org/10.17192/z2013.0732
URN: urn:nbn:de:hebis:04-z2013-07327
DDC:610 Medizin
Titel (trans.):Strategien für genom-weite Assoziations-Analysen von Rohdaten für Kopienzahl Variationen (CNVs)
Publikationsdatum:2013-12-18
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
genetics, Fettsucht, ADHD, Aufmerksamkeits-Defizit-Syndrom, Genetik, obesity

Summary:
Copy number variations (CNVs), as one type of genetic variation in which a large sequence of nucleotides is repeated in tandem multiple times to a variable extent among different individuals of one population, have gained much attention with regard to human phenotypic diversity. Recent efforts to map human structural variation have shown that CNVs affect a significantly larger proportion of the human genome than single nucleotide polymorphisms (SNPs). This gave rise to the idea of CNVs playing an important role in explaining some of the large proportion of the phenotypic variance in a population that is due to genetic factors and that could not yet be explained by common SNPs. Current data from SNP genotyping arrays were found to be useful not only for the genome-wide genotyping of SNPs, but also for the detection of CNVs. However, due to the mostly still inadequate accuracy of CNV detection and the rareness of provided methods for association testing, to design a genome-wide CNV association study can be a challenge. This thesis explored four strategies for the genome-wide association analyses of raw CNV data being derived from the Affymetrix Genome-Wide Human SNP Array 6.0. Initially, the two most commonly used strategic approaches are presented and applied to real data examples for the phenotypes early-onset extreme obesity and childhood attention - deficit / hyperactivity disorder (ADHD). On the one hand, raw intensity values reflecting individual copy numbers are directly tested for an association with the risk of disease, without providing or making use of any information about CNV genotypes. On the other hand, genome-wide CNV analyses are performed as a two-step procedure in first calling individual CNV genotypes and then using these to test for CNV - phenotype associations. Secondly, two extensions of the standard strategies are introduced, which both form its own strategy with a special focus on the intention to overcome problems and weaknesses of the respective widely used strategy. In this sense, one proposed strategy accounts for the fact that thousands of array-provided CNV marker are located in genomic regions without underlying copy number variability, and thus suggests to test only a pre-selected set of relevant and informative intensity values for associations in order to relax the multiple testing issue. Furthermore, the second proposed strategy addresses the known inaccuracy of CNV calling in especially common CNV regions that is often caused to some extent by the high CNV population frequency and the consequent inadequacy of estimating CNV genotypes relative to sample's mean or median hybridization intensity values. Instead, the use of intensity reference values being estimated in a Gaussian mixture model framework, called MCMR, is investigated in application to data examples for the HapMap and replicate samples as well as to the previously analysed obesity data set. The latter obesity sample has been analysed in use of all four genome-wide CNV analyses strategies which allowed a comparison on the strategy's applicability and performance. The four strategies were observed to greatly vary in terms of computing efforts and genetic results. Whereas one of the two standard strategies was successful in the identification of rare CNVs at the PARK2 locus being genome-wide statistitically significantly associated with ADHD in children, none of these two strategies detected any CNV - obesity association. Contrarily, alternative MCMR reference intensity values showed improved reliability of CNV calls compared to standard calling in terms of stability, reproducibility and false positive rates. As a consequence, a novel common CNV for early-onset extreme obesity on chromosome 11q11 was identified in application of the proposed analyses strategies. Moreover, a common deletion at chromosome 10q11.22, which was previously reported to be associated with body mass index (BMI), was also replicated in use of one the proposed strategies. The results suggest that the choice of the genome-wide CNV association analyses strategy may greatly influence genetic results. The presented strategic investigations presented here give an overview on aspects to consider when planning a genome-wide CNV analyses pipeline, but do not allow general recommendations towards an optimal design.

Bibliographie / References

  1. G. Polanczyk, M. S. de Lima, B. L. Horta, J. Biederman, and L. A. Rohde. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry, 164(6):942–948, 2007.
  2. Genomes Project Consortium, G. R. Abecasis, D. Altshuler, A. Auton, L. D. Brooks, R. M. Durbin, R. A. Gibbs, M. E. Hurles, and G. A. McVean. A map of human genome variation from population-scale sequencing. Nature, 467(7319): 1061–1073, 2010a.
  3. B. Efron. Correlation and Large-Scale Simultaneous Significance Testing. J. Amer. Statist. Assoc., 102:93–103, 2007a.
  4. B. Efron, R. Tibshirani, J. D. Storey, and V. Tusher. Empirical Bayes analysis of a microarray experiment. J. Amer. Statist. Assoc., 96:1151–1160, 2001.
  5. References C. Fraley, A. Raftery, T. B. Murphy, and L. Scrucca. MCLUST Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report, Department of Statistics, University of Washington (597), 2012.
  6. J. O. Korbel, A. E. Urban, J. P. Affourtit, B. Godwin, F. Grubert, J. F. Simons, P. M. Kim, D. Palejev, N. J. Carriero, L. Du, et al. Paired-end mapping reveals extensive structural variation in the human genome. Science, 318(5849):420–426, 2007.
  7. B. Efron. Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis. Journal of the American Statistical Association, 99:96–104, 2004.
  8. R. Pique-Regi, J. Monso-Varona, A. Ortega, R. C. Seeger, T. J. Triche, and S. As- gharzadeh. Sparse representation and Bayesian detection of genome copy number alterations from microarray data. Bioinformatics, 24(3):309–318, 2008.
  9. I. Jarick, A. L. Volckmar, C. Putter, S. Pechlivanis, T. T. Nguyen, M. R. Dauver- mann, S. Beck, O. Albayrak, S. Scherag, S. Gilsbach, et al. Genome-wide analysis of rare copy number variations reveals PARK2 as a candidate gene for attention- deficit/hyperactivity disorder. Mol. Psychiatry, doi: 10.1038/mp.2012.161, 2012.
  10. A. J. Stunkard, T. T. Foch, and Z. Hrubec. A twin study of human obesity. JAMA, 256(1):51–54, Jul 1986a.
  11. A. Piotrowski, C. E. Bruder, R. Andersson, T. Diaz de Stahl, U. Menzel, J. Sandgren, A. Poplawski, D. von Tell, C. Crasto, A. Bogdan, et al. Somatic mosaicism for copy number variation in differentiated human tissues. Hum. Mutat., 29(9):1118– 1124, 2008.
  12. M. Turula, J. Kaprio, A. Rissanen, and M. Koskenvuo. Body weight in the Finnish Twin Cohort. Diabetes Res. Clin. Pract., 10 Suppl 1:S33–36, 1990.
  13. I. Ionita-Laza, A. J. Rogers, C. Lange, B. A. Raby, and C. Lee. Genetic associ- ation analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics, 93(1):22–26, 2009.
  14. S. A. McCarroll. Copy number variation and human genome maps. Nat. Genet., 42 (5):365–366, 2010.
  15. L. Winchester, C. Yau, and J. Ragoussis. Comparing CNV detection methods for SNP arrays. Brief Funct Genomic Proteomic, 8(5):353–366, 2009.
  16. N. Day, A. Hemmaplardh, R. E. Thurman, J. A. Stamatoyannopoulos, and W. S. Noble. Unsupervised segmentation of continuous genomic data. Bioinformatics, 23(11):1424–1426, 2007.
  17. G. Rigaill, P. Hupe, A. Almeida, P. La Rosa, J. P. Meyniel, C. Decraene, and E. Barillot. ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays. Bioinformatics, 24(6):768–774, 2008.
  18. R. Pique-Regi, A. Ortega, and S. Asgharzadeh. Joint estimation of copy number variation and reference intensities on multiple DNA arrays using GADA. Bioin- formatics, 25(10):1223–1230, 2009.
  19. References R. L. Prentice and R. Pyke. Logistic disease incidence models and case-control studies. Biometrika, 66(3):403–411, 1979.
  20. A. B. Olshen, E. S. Venkatraman, R. Lucito, and M. Wigler. Circular binary seg- mentation for the analysis of array-based DNA copy number data. Biostatistics, 5(4):557–572, 2004.
  21. L. Feuk, C. R. Marshall, R. F. Wintle, and S. W. Scherer. Structural variants: changing the landscape of chromosomes and design of disease studies. Hum. Mol. Genet., 15 Spec No 1:57–66, 2006b.
  22. I. Jarick, C. I. Vogel, S. Scherag, H. Schäfer, J. Hebebrand, A. Hinney, and A. Scherag. Novel common copy number variation for early onset extreme obesity on chromosome 11q11 identified by a genome-wide analysis. Hum. Mol. Genet., 20(4):840–852, 2011.
  23. S. Colella, C. Yau, J. M. Taylor, G. Mirza, H. Butler, P. Clouston, A. S. Bas- sett, A. Seller, C. C. Holmes, and J. Ragoussis. QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res., 35(6):2013–2025, 2007.
  24. A. E. Dellinger, S. M. Saw, L. K. Goh, M. Seielstad, T. L. Young, and Y. J. Li. Comparative analyses of seven algorithms for copy number variant identification from single nucleotide polymorphism arrays. Nucleic Acids Res., 38(9):e105, 2010.
  25. P. M. Kim, H. Y. Lam, A. E. Urban, J. O. Korbel, J. Affourtit, F. Grubert, X. Chen, S. Weissman, M. Snyder, and M. B. Gerstein. Analysis of copy number variants and segmental duplications in the human genome: Evidence for a change in the process of formation in recent evolutionary history. Genome Res., 18(12):1865– 1874, 2008.
  26. D. Komura, F. Shen, S. Ishikawa, K. R. Fitch, W. Chen, J. Zhang, G. Liu, S. Ihara, H. Nakamura, M. E. Hurles, et al. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays. Genome Res., 16(12): 1575–1584, 2006.
  27. Y. Shen and B. L. Wu. Microarray-based genomic DNA profiling technologies in clinical molecular diagnostics. Clin. Chem., 55(4):659–669, 2009.
  28. Kruse. Possible gene dosage effect of glutathione-S-transferases on atopic asthma: using real-time PCR for quantification of GSTM1 and GSTT1 gene copy numbers. Hum. Mutat., 24(3):208–214, 2004.
  29. K. Wang, M. Li, D. Hadley, R. Liu, J. Glessner, S. F. Grant, H. Hakonarson, and M. Bucan. PennCNV: an integrated hidden Markov model designed for high- References resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res., 17(11):1665–1674, 2007.
  30. T. H. Shaikh, X. Gai, J. C. Perin, J. T. Glessner, H. Xie, K. Murphy, R. O'Hara, T. Casalunovo, L. K. Conlin, M. D'Arcy, et al. High-resolution mapping and References analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Res., 19(9):1682–1690, 2009.
  31. J. C. Marioni, N. P. Thorne, A. Valsesia, T. Fitzgerald, R. Redon, H. Fiegler, T. D. Andrews, B. E. Stranger, A. G. Lynch, E. T. Dermitzakis, et al. Breaking the waves: improved detection of copy number variation from microarray-based comparative genomic hybridization. Genome Biol., 8(10):R228, 2007.
  32. K. Prüfer, K. Munch, I. Hellmann, K. Akagi, J. R. Miller, B. Walenz, S. Koren, G. Sutton, C. Kodira, R. Winer, et al. The bonobo genome compared with the chimpanzee and human genomes. Nature, 486(7404):527–531, 2012.
  33. L. Feuk, A. R. Carson, and S. W. Scherer. Structural variation in the human genome. Nat. Rev. Genet., 7(2):85–97, 2006a.
  34. Wellcome Trust Case Control Consortium, N. Craddock, M. E. Hurles, N. Cardin, R. D. Pearson, V. Plagnol, S. Robson, D. Vukcevic, C. Barnes, D. F. Conrad, et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature, 464(7289):713–20, 2010b.
  35. D. F. Conrad, D. Pinto, R. Redon, L. Feuk, O. Gokcumen, Y. Zhang, J. Aerts, T. D. Andrews, C. Barnes, P. Campbell, et al. Origins and functional impact of copy number variation in the human genome. Nature, 464(7289):704–712, 2010.
  36. R. Redon, S. Ishikawa, K. R. Fitch, L. Feuk, G. H. Perry, T. D. Andrews, H. Fiegler, M. H. Shapero, A. R. Carson, W. Chen, et al. Global variation in copy number in the human genome. Nature, 444(7118):444–454, 2006.
  37. D. F. Conrad, T. D. Andrews, N. P. Carter, M. E. Hurles, and J. K. Pritchard. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet., 38(1):75–81, 2006.
  38. A. Hinney, A. Scherag, I. Jarick, O. Albayrak, C. Putter, S. Pechlivanis, M. R. Dauvermann, S. Beck, H. Weber, S. Scherag, et al. Genome-wide association study in German patients with attention deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet., 156B(8):888–897, 2011.
  39. K. P. Lesch, S. Selch, T. J. Renner, C. Jacob, T. T. Nguyen, T. Hahn, M. Romanos, S. Walitza, S. Shoichet, A. Dempfle, et al. Genome-wide copy number variation analysis in attention-deficit/hyperactivity disorder: association with neuropeptide Y gene dosage in an extended pedigree. Mol. Psychiatry, 16(5):491–503, 2011.
  40. C. M. Freitag, L. A. Rohde, T. Lempp, and M. Romanos. Phenotypic and measure- ment influences on heritability estimates in childhood ADHD. Eur Child Adolesc Psychiatry, 19(3):311–323, 2010.
  41. 1000 Genomes Project Consortium, G. R. Abecasis, A. Auton, L. D. Brooks, M. A. dePristo, R. M. Durbin, R. E. Handsaker, H. M. Kang, G. T. Marth, and G. A. McVean. An integrated map of genetic variation from 1,092 human genomes. Nature, 491(7422):56–65, 2012.
  42. S. Levy, G. Sutton, P. C. Ng, L. Feuk, A. L. Halpern, B. P. Walenz, N. Axelrod, J. Huang, E. F. Kirkness, G. Denisov, et al. The diploid genome sequence of an individual human. PLoS Biol., 5(10):e254, 2007.
  43. A. Scherag, C. Dina, A. Hinney, V. Vatin, S. Scherag, C.I. Vogel, T.D. Müller, H. Grallert, H.E. Wichmann, B. Balkau, ..., I. Jarick, et al. Two new Loci for body- weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and german study groups. PLoS Genet., 6(4):e1000916, 2010.
  44. B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed. A comparison of nor- malization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19(2):185–193, 2003.
  45. H. Bengtsson, J. Bullard, and K. D. Hansen. affxparser: Affymetrix file parsing sdk. R Manual, R package version 1.14.2, 2008a.
  46. A. Schmermund, S. Mohlenkamp, A. Stang, D. Gronemeyer, R. Seibel, H. Hirche, K. Mann, W. Siffert, K. Lauterbach, J. Siegrist, et al. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL Study. Risk Factors, Evaluation of Coronary Calcium and Lifestyle. Am. Heart J., 144(2):212–218, 2002.
  47. D. Rabinowitz and N. Laird. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum. Hered., 50(4):211–223, 2000.
  48. Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol., 57:289–300, 1995.
  49. S. A. McCarroll and D. M. Altshuler. Copy-number variation and association studies of human disease. Nat. Genet., 39(7 Suppl):37–42, 2007.
  50. American-Psychiatric-Association. Diagnostic and Statistical Manual of Mental Dis- eases (DSM-IV), 4th ed. American Psychiatric Publishing; Washington, DC, 1994.
  51. H. Bengtsson, R. Irizarry, B. Carvalho, and T. P. Speed. Estimation and assessment of raw copy numbers at the single locus level. Bioinformatics, 24(6):759–767, 2008b.
  52. E. Tuzun, A. J. Sharp, J. A. Bailey, R. Kaul, V. A. Morrison, L. M. Pertz, E. Haugen, H. Hayden, D. Albertson, D. Pinkel, et al. Fine-scale structural variation of the human genome. Nat. Genet., 37(7):727–732, 2005.
  53. H. H. Maes, M. C. Neale, and L. J. Eaves. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet., 27(4):325–351, Jul 1997.
  54. J. R. Lupski. Genomic rearrangements and sporadic disease. Nat. Genet., 39(7
  55. D. A. Peiffer, J. M. Le, F. J. Steemers, W. Chang, T. Jenniges, F. Garcia, K. Haden, J. Li, C. A. Shaw, J. Belmont, et al. High-resolution genomic profiling of chro- mosomal aberrations using Infinium whole-genome genotyping. Genome Res., 16 (9):1136–1148, 2006.
  56. J.P. Bradfield, H.R. Taal, N.J. Timpson, A. Scherag, C. Lecoeur, N.M. Warrington, E. Hypponen, C. Holst, B. Valcarcel, E. Thiering, ..., I. Jarick et al. A genome- wide association meta-analysis identifies new childhood obesity loci. Nat. Genet., 44(5):526-31, 2012.
  57. E.K. Speliotes, C.J. Willer, S.I. Berndt, K.L. Monda, G. Thorleifsson, A.U. Jackson, H. Lango Allen , C.M. Lindgren, J. Luan, R. Mägi, ..., I. Jarick, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet., 42(11):937-48, 2010.
  58. B. Efron, B. B. Turnbull, and B. Narasimhan. locfdr: Computes local false dis- covery rates. R Manual, R package version 1.1-7, http://CRAN.R-project.org/ package=locfdr, 2011.
  59. J. Quackenbush. Microarray data normalization and transformation. Nat. Genet., 32 Suppl:496–501, 2002.
  60. K. Inoue and J. R. Lupski. Molecular mechanisms for genomic disorders. Annu Rev Genomics Hum Genet, 3:199–242, 2002.
  61. I. Ionita-Laza, G. H. Perry, B. A. Raby, B. Klanderman, C. Lee, N. M. Laird, S. T. Weiss, and C. Lange. On the analysis of copy-number variations in genome-wide References association studies: a translation of the family-based association test. Genet. Epidemiol., 32(3):273–284, 2008.
  62. R. McGinnis, S. Shifman, and A. Darvasi. Power and efficiency of the TDT and case-control design for association scans. Behav. Genet., 32(2):135–144, 2002. References D. A. Oldridge, S. Banerjee, S. R. Setlur, A. Sboner, and F. Demichelis. Optimizing copy number variation analysis using genome-wide short sequence oligonucleotide arrays. Nucleic Acids Res., 38(10):3275–3286, 2010.
  63. A. C. Lionel, J. Crosbie, N. Barbosa, T. Goodale, B. Thiruvahindrapuram, J. Rick- aby, M. Gazzellone, A. R. Carson, J. L. Howe, Z. Wang, et al. Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Sci Transl Med, 3(95):95ra75, 2011.
  64. B. Efron. Size, power and false discovery rates. The Annals of Statistics, 35(4): 1351–1377, 2007b.
  65. J. Ott. Statistical properties of the haplotype relative risk. Genet. Epidemiol., 6(1): 127–130, 1989.
  66. Ich erkläre ehrenwörtlich, dass ich die dem Fachbereich Medizin Marburg zur Pro- motionsprüfung eingereichte Arbeit mit dem Titel " Strategies for Genome-Wide Association Analyses of Raw Copy Number Variation Data " im Institut für Medi- zinische Biometrie und Epidemiologie unter Leitung von Prof. Dr. H. Schäfer ohne sonstige Hilfe selbst durchgeführt und bei der Abfassung der Arbeit keine anderen als die in der Dissertation aufgeführten Hilfsmittel benutzt habe. Ich habe bisher an keinem in-oder ausländischen Medizinischen Fachbereich ein Gesuch um Zulas- sung zur Promotion eingereicht, noch die vorliegende oder eine andere Arbeit als Dissertation vorgelegt.
  67. References G. M. Cooper, T. Zerr, J. M. Kidd, E. E. Eichler, and D. A. Nickerson. Systematic assessment of copy number variant detection via genome-wide SNP genotyping. Nat. Genet., 40(10):1199–1203, 2008.
  68. The-Chimpanzee-Sequencing and Analysis-Consortium. Initial sequence of the chim- panzee genome and comparison with the human genome. Nature, 437(7055):69–87, 2005.
  69. O. Mayo. The rise and fall of the common disease-common variant (CD-CV) hy- pothesis: how the sickle cell disease paradigm led us all astray (or did it?). Twin Res Hum Genet, 10(6):793–804, 2007.
  70. Affymetrix. Whitepaper: Genome-Wide Human SNP Array 6.0. http://media.affy metrix.com/support/technical/datasheets/genomewide snp6 datasheet.pdf, 2009.
  71. Affymetrix. Whitepaper: CNAT 4.0. Copy Number and Loss of Heterozygosity Es- timation Algorithms for the GeneChip R Human Mapping 10/50/100/250/500K Array Set. http://media.affymetrix.com/support/technical/whitepapers/cnat 4 al gorithm whitepaper.pdf, 2007.
  72. E. K. Speliotes, C. J. Willer, S. I. Berndt, K. L. Monda, G. Thorleifsson, A. U. Jackson, H. Lango Allen, C. M. Lindgren, J. Luan, R. Magi, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet., 42(11):937–948, 2010.
  73. A. v. Berg, U. Kramer, E. Link, C. Bollrath, J. Heinrich, I. Brockow, S. Koletzko, A. Grubl, B. Filipiak-Pittroff, H. E. Wichmann, et al. Impact of early feeding on childhood eczema: development after nutritional intervention compared with the natural course -the GINIplus study up to the age of 6 years. Clin. Exp. Allergy, 40(4):627–636, 2010.
  74. A. Zutavern, I. Brockow, B. Schaaf, G. Bolte, A. von Berg, U. Diez, M. Borte, O. Herbarth, H. E. Wichmann, and J. Heinrich. Timing of solid food introduction in relation to atopic dermatitis and atopic sensitization: results from a prospective birth cohort study. Pediatrics, 117(2):401–411, 2006. Tabellarischer Lebenslauf Eigene Publikationen
  75. H. E. Wichmann, C. Gieger, and T. Illig. KORA-gen–resource for population ge- netics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen, 67 Suppl 1:26–30, 2005.
  76. T. Walsh, J. M. McClellan, S. E. McCarthy, A. M. Addington, S. B. Pierce, G. M. Cooper, A. S. Nord, M. Kusenda, D. Malhotra, A. Bhandari, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science, 320(5875):539–543, 2008.
  77. C. J. Willer, E. K. Speliotes, R. J. Loos, S. Li, C. M. Lindgren, I. M. Heid, S. I. Berndt, A. L. Elliott, A. U. Jackson, C. Lamina, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet., 41(1):25–34, 2009.
  78. D. Zhang, Y. Qian, N. Akula, N. Alliey-Rodriguez, J. Tang, The Bipolar Genome Study, E. S. Gerschon, and C. Liu. Accuracy of CNV Detection from GWAS Data. PLoS ONE, 6(1):e14511, 2011.
  79. A. Koike, N. Nishida, D. Yamashita, and K. Tokunaga. Comparative analysis of copy number variation detection methods and database construction. BMC Genet., 12: 29, 2011.
  80. J. Huang, W. Wei, J. Zhang, G. Liu, G. R. Bignell, M. R. Stratton, P. A. Futreal, R. Wooster, K. W. Jones, and M. H. Shapero. Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum. Genomics, 1(4): 287–299, 2004.
  81. M. Krawczak, S. Nikolaus, H. von Eberstein, P. J. Croucher, N. E. El Mokhtari, and S. Schreiber. PopGen: population-based recruitment of patients and controls for the analysis of complex genotype-phenotype relationships. Community Genet, 9 (1):55–61, 2006.
  82. S. A. McCarroll, F. G. Kuruvilla, J. M. Korn, S. Cawley, J. Nemesh, A. Wysoker, M. H. Shapero, P. I. de Bakker, J. B. Maller, A. Kirby, et al. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet., 40(10):1166–1174, 2008.
  83. A. J. Walley, J. E. Asher, and P. Froguel. The genetic contribution to non-syndromic human obesity. Nat. Rev. Genet., 10(7):431–442, Jul 2009.
  84. N. M. Laird and C. Lange. Family-based designs in the age of large-scale gene- association studies. Nat. Rev. Genet., 7(5):385–394, 2006.
  85. K. L. Lunetta, S. V. Faraone, J. Biederman, and N. M. Laird. Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. Am. J. Hum. Genet., 66(2):605–614, 2000.
  86. References D. P. Locke, A. J. Sharp, S. A. McCarroll, S. D. McGrath, T. L. Newman, Z. Cheng, S. Schwartz, D. G. Albertson, D. Pinkel, D. M. Altshuler, et al. Linkage disequi- librium and heritability of copy-number polymorphisms within duplicated regions of the human genome. Am. J. Hum. Genet., 79(2):275–290, 2006.
  87. S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. de Bakker, M. J. Daly, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 81(3):559–575, 2007.
  88. J. M. Kidd, G. M. Cooper, W. F. Donahue, H. S. Hayden, N. Sampas, T. Graves, N. Hansen, B. Teague, C. Alkan, F. Antonacci, et al. Mapping and sequencing of structural variation from eight human genomes. Nature, 453(7191):56–64, 2008.
  89. L. Franke, C. G. de Kovel, Y. S. Aulchenko, G. Trynka, A. Zhernakova, K. A. Hunt, H. M. Blauw, L. H. van den Berg, R. Ophoff, P. Deloukas, et al. Detec- tion, imputation, and association analysis of small deletions and null alleles on oligonucleotide arrays. Am. J. Hum. Genet., 82(6):1316–1333, 2008.
  90. Tran, A. Scheffer, I. Steinfeld, P. Tsang, N. A. Yamada, et al. The fine-scale and complex architecture of human copy-number variation. Am. J. Hum. Genet., 82 (3):685–695, 2008.
  91. Zhang, S. S. Dong, X. H. Xu, and H. W. Deng. Genome-wide association study suggested copy number variation may be associated with body mass index in the Chinese population. J. Hum. Genet., 54(4):199–202, 2009.
  92. References J. M. Korn, F. G. Kuruvilla, S. A. McCarroll, A. Wysoker, J. Nemesh, S. Cawley, E. Hubbell, J. Veitch, P. J. Collins, K. Darvishi, C. Lee, M. M. Nizzari, S. B. Gabriel, S. Purcell, M. J. Daly, and D. Altshuler. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. Nat. Genet., 40(10):1253–1260, 2008.
  93. C. Barnes, V. Plagnol, T. Fitzgerald, R. Redon, J. Marchini, D. Clayton, and M. E. Hurles. A robust statistical method for case-control association testing with copy number variation. Nat. Genet., 40(10):1245–1252, 2008.
  94. T. A. Manolio, F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff, D. J. Hunter, M. I. McCarthy, E. M. Ramos, L. R. Cardon, A. Chakravarti, et al. Finding the missing heritability of complex diseases. Nature, 461(7265):747–753, 2009.
  95. J. Elia, X. Gai, H. M. Xie, J. C. Perin, E. Geiger, J. T. Glessner, M. D'arcy, R. deBerardinis, E. Frackelton, C. Kim, et al. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurode- velopmental genes. Mol. Psychiatry, 15(6):637–646, 2010.
  96. N. M. Williams, I. Zaharieva, A. Martin, K. Langley, K. Mantripragada, R. Fos- sdal, H. Stefansson, K. Stefansson, P. Magnusson, O. O. Gudmundsson, et al. Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet, 376(9750):1401–1408, 2010.
  97. A. Scherag, I. Jarick, J. Grothe, H. Biebermann, S. Scherag, A.L. Volckmar, C.I. Vogel, B. Greene, J. Hebebrand, A. Hinney. Investigation of a genome wide as- sociation signal for obesity: synthetic association and haplotype analyses at the melanocortin 4 receptor gene locus. PLoS One, 5(11):e13967, 2010.
  98. S. Eyheramendy, C. Gieger, M. Laan, T. Illig, T. Meitinger, and E. Wichmann. Effect of genome-wide simultaneous hypotheses tests on the discovery rate. Int J Mol Epidemiol Genet, 2(2):163–177, 2011.
  99. D. Lin, I. B. Gibson, J. M. Moore, P. C. Thornton, S. M. Leal, and P. J. Hast- ings. Global chromosomal structural instability in a subpopulation of starving Escherichia coli cells. PLoS Genet., 7(8):e1002223, 2011.
  100. H. Park, J. I. Kim, Y. S. Ju, O. Gokcumen, R. E. Mills, S. Kim, S. Lee, D. Suh, D. Hong, H. P. Kang, et al. Discovery of common Asian copy number variants us- ing integrated high-resolution array CGH and massively parallel DNA sequencing. Nat. Genet., 42(5):400–405, 2010.
  101. J. Hardy and A. Singleton. Genomewide association studies and human disease. N. Engl. J. Med., 360(17):1759–1768, 2009.
  102. C. Lange, D. L. DeMeo, and N. M. Laird. Power and design considerations for a general class of family-based association tests: quantitative traits. Am. J. Hum. Genet., 71(6):1330–1341, 2002.
  103. Schull, and F. Schulsinger. An adoption study of human obesity. N. Engl. J. Med., 314(4):193–198, Jan 1986b.
  104. C. E. Bruder, A. Piotrowski, A. A. Gijsbers, R. Andersson, S. Erickson, T. Diaz de Stahl, U. Menzel, J. Sandgren, D. von Tell, A. Poplawski, et al. Phenotypi- cally concordant and discordant monozygotic twins display different DNA copy- number-variation profiles. Am. J. Hum. Genet., 82(3):763–771, 2008.
  105. T.D. Müller, M.H. Tschöp, I. Jarick, S. Ehrlich, S. Scherag, B. Herpertz-Dahlmann, S. Zipfel, W. Herzog, M. de Zwaan, R. Burghardt, et al. Genetic variation of the ghrelin activator gene ghrelin O-acyltransferase (GOAT) is associated with anorexia nervosa. J. Psychiatr. Res., 45(5):706-11, 2010. Tabellarischer Lebenslauf
  106. H. S. Chai, T. M. Therneau, K. R. Bailey, and J. P. Kocher. Spatial normalization improves the quality of genotype calling for Affymetrix SNP 6.0 arrays. BMC Bioinformatics, 11:356, 2010.
  107. I. Subirana, R. Diaz-Uriarte, G. Lucas, and J. R. Gonzalez. CNVassoc: Association analysis of CNV data using R. BMC Med Genomics, 4:47, 2011.
  108. A. L. Volckmar, F. Bolze, I. Jarick, N. Knoll, A. Scherag, T. Reinehr, T. Illig, H. Grallert, H. E. Wichmann, S. Wiegand S, et al. Mutation screen in the GWAS derived obesity gene SH2B1 including functional analyses of detected variants. BMC Med Genomics, 5:65, 2012.
  109. C. Li, R. Beroukhim, B. A. Weir, W. Winckler, L. A. Garraway, W. R. Sellers, and M. Meyerson. Major copy proportion analysis of tumor samples using SNP arrays. BMC Bioinformatics, 9:204, 2008.
  110. N. Knoll, I. Jarick, A. L. Volckmar, M. Klingenspor, T. Illig, H. Grallert, C. Gieger, H. E. Wichmann, A. Peters, J. Hebebrand, et al. Gene set of nuclear-encoded mitochondrial regulators is enriched for common inherited variation in obesity.
  111. J. Wardle, S. Carnell, C. M. Haworth, and R. Plomin. Evidence for a strong genetic influence on childhood adiposity despite the force of the obesogenic environment. Am. J. Clin. Nutr., 87(2):398–404, Feb 2008.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten