Publikationsserver der Universitätsbibliothek Marburg

Titel:Evaluation des oral verfügbaren Smoothened-Antagonisten LDE225 zur Therapie von Inselzelltumoren in der transgenen Rip1Tag2-Maus
Autor:Wiese, Dominik
Weitere Beteiligte: Fendrich, Volker (Prof. Dr. med.)
URN: urn:nbn:de:hebis:04-z2013-06777
DDC: Medizin


neuroendocrine tumor, transgenic, Neuroendokriner Tumor, Rip1Tag2, transgen, Hedgehog <Gen>, Rip1Tag2, Pankreas, Hedgehog, pancreas

Der Hedgehog-Signalweg und sein Rezeptor Smoothened konnten in vorausgegangenen Studien als potenzieller therapeutischer Angriffspunkt bei pankreatischen neuroendokrinen Neoplasien identifiziert werden. Ziel dieser Arbeit war die Evaluation des oral bioverfügbaren Smo-Antagonisten LDE225 als neue Therapieoption. Dies war an einem Modell für Inselzelltumoren bisher nicht erfolgt. Um die in vivo Wirksamkeit zu untersuchen fand das transgene Rip1Tag2-Mausmodell für Inselzelltumoren Verwendung. Die Tiere der Therapiegruppe wurden mit LDE225 in der Dosierung 80mg/kg/d von der fünften Lebenswoche an, bis zu ihrem Tod behandelt. Die von therapierten und nicht therapierten Mäusen gewonnenen Pankreata wurden immunhistochemisch und histologisch aufgearbeitet. Zudem wurde aus isolierter Inselzell-RNA synthetisierte cDNA mittels quantitativer real-time-PCR auf die Expression der Hh-Zielgene untersucht. Histologisch verringerte die Behandlung die Tumorfläche um 95% gegenüber unbehandelten Rip1Tag2-Mäusen. Zudem überlebten im Survival-Versuch die therapierten Mäuse im Median signifikant länger als die Kontrollgruppe (p<0,05). Die quantitative real-time-PCR zeigte eine deutliche Expressions-Minderung der Hh-Zielgene Gli1, Ptch1 und Hip1, was ein Vorliegen effektiver Dosen des Wirkstoffes im Zielgewebe in vivo bestätigte. Die Ergebnisse dieser Arbeit zeigen, dass der oral verfügbare Smo-Antagonist LDE225 tatsächlich einen neuen Therapieansatz bei pankreatischen neuroendokrinen Neoplasien darstellen könnte.

Recent studies were able to identify the Hedgehog-pathway and its receptor Smoothened as a potential therapeutic target in pancreatic neuroendocrine neoplasms. The goal of this study was to evaluate the orally bioavailable Smo-antagonist LDE225 as a new therapeutic agent. Such an evaluation had not been performed for islet cell tumors. To investigate in vivo effectiveness, Rip1Tag2 transgenic mice were treated from week 5 till death with a dose of 80 mg/kg/d. Resected pancreata from treated and untreated mice were microscopically and immunohistochemically evaluated. Additionally, quantitative real-time-PCR for Hh target genes was performed on cDNA synthesized from isolated islet RNA. Microscopically, the treatment reduced tumor size by 95%. Median survival was significantly prolonged in treated mice (p<0,05). Quantitative real-time-PCR showed a clear downregulation of Hh target genes Gli1, Ptch1 and Hip1, confirming effective pharmacologic levels within the desired tissue site in vivo. The findings of this study suggest that the orally bioavailable Smo-antagonist LDE225 might provide new options in the therapy of pancreatic neuroendocrine neoplasms.

Bibliographie / References

  1. Kim, S.K., Hebrok, M., and Melton, D.A. (1997). Notochord to endoderm signaling is required for pancreas development. Development 124, 4243–4252.
  2. Norton, J.A., Harris, E.J., Chen, Y., Visser, B.C., Poultsides, G.A., Kunz, P.C., Fisher, G.A., and Jensen, R.T. (2011). Pancreatic endocrine tumors with major vascular abutment, involvement, or encasement and indication for resection. Arch Surg 146, 724–732.
  3. Strosberg, J.R., Fine, R.L., Choi, J., Nasir, A., Coppola, D., Chen, D.-T., Helm, J., and Kvols, L. (2011). First-line chemotherapy with capecitabine and temozolomide in patients with metastatic pancreatic endocrine carcinomas. Cancer 117, 268–275.
  4. Moertel, C.G., Hanley, J.A., and Johnson, L.A. (1980). Streptozocin alone compared with streptozocin plus fluorouracil in the treatment of advanced islet-cell carcinoma. N. Engl. J.
  5. Yao, J.C., Hassan, M., Phan, A., Dagohoy, C., Leary, C., Mares, J.E., Abdalla, E.K., Fleming, J.B., Vauthey, J.-N., Rashid, A., et al. (2008). One hundred years after " carcinoid " : epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 26, 3063–3072.
  6. Qualtrough, D., Buda, A., Gaffield, W., Williams, A.C., and Paraskeva, C. (2004). Hedgehog signalling in colorectal tumour cells: induction of apoptosis with cyclopamine treatment. Int. J. Cancer 110, 831–837.
  7. Oberg, K., and Eriksson, B. (2005). Endocrine tumours of the pancreas. Best Pract Res Clin Gastroenterol 19, 753–781.
  8. Whipple (1938). The surgical therapy of hyperinsulinism. J Int Chir.
  9. Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real- time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408.
  10. Rehm, J. (2010). Die Blockade des Hedgehog Signalweges mit Cyclopamin als neue Therapieoption bei neuroendokrinen Pankreastumoren. Dissertation, Philipps-Universität Marburg, Fachbereich Medizin
  11. Yao, J.C., Shah, M.H., Ito, T., Bohas, C.L., Wolin, E.M., Van Cutsem, E., Hobday, T.J., Okusaka, T., Capdevila, J., de Vries, E.G.E., et al. (2011). Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 514–523.
  12. Metcalfe, C., and Sauvage, F.J. de (2011). Hedgehog Fights Back: Mechanisms of Acquired Resistance against Smoothened Antagonists. Cancer Res 71, 5057–5061.
  13. Kubo, M., Nakamura, M., Tasaki, A., Yamanaka, N., Nakashima, H., Nomura, M., Kuroki, S., and Katano, M. (2004). Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 64, 6071–6074.
  14. Thomas, M.K., Lee, J.H., Rastalsky, N., and Habener, J.F. (2001). Hedgehog signaling regulation of homeodomain protein islet duodenum homeobox-1 expression in pancreatic beta-cells. Endocrinology 142, 1033–1040.
  15. Thomas, M.K., Rastalsky, N., Lee, J.H., and Habener, J.F. (2000). Hedgehog signaling regulation of insulin production by pancreatic beta-cells. Diabetes 49, 2039–2047.
  16. Tabs, S., and Avci, O. (2004). Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur J Dermatol 14, 96–102.
  17. Vortrag auf dem 128. Kongress der Deutschen Gesellschaft für Chirurgie mit dem Titel: " Der oral verfügbare Smo-Antagonist LDE225 in einem transgenen Mausmodell für Inselzelltumoren " D. Wiese, J. Waldmann, M. Lauth, A. Heverhagen, J. Rehm, D. K. Bartsch, V. Fendrich 2.
  18. Nüsslein-Volhard, C., and Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.
  19. Plöckinger, U., and Wiedenmann, B. (2007). Neuroendocrine tumors. Biotherapy. Best Pract.
  20. Rinke, A., Müller, H.-H., Schade-Brittinger, C., Klose, K.-J., Barth, P., Wied, M., Mayer, C., Aminossadati, B., Pape, U.-F., Bläker, M., et al. (2009). Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol. 27, 4656–4663.
  21. Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., and Erlich, H. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51 Pt 1, 263–273.
  22. Stone, D.M., Hynes, M., Armanini, M., Swanson, T.A., Gu, Q., Johnson, R.L., Scott, M.P., Pennica, D., Goddard, A., Phillips, H., et al. (1996). The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134.
  23. Moertel, C.G., Kvols, L.K., O'Connell, M.J., and Rubin, J. (1991). Treatment of neuroendocrine carcinomas with combined etoposide and cisplatin. Evidence of major therapeutic activity in the anaplastic variants of these neoplasms. Cancer 68, 227–232.
  24. Pavel, M., Baudin, E., Couvelard, A., Krenning, E., Öberg, K., Steinmüller, T., Anlauf, M., Wiedenmann, B., and Salazar, R. (2012). ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology 95, 157–176.
  25. Skvara, H., Kalthoff, F., Meingassner, J.G., Wolff-Winiski, B., Aschauer, H., Kelleher, J.F., Wu, X., Pan, S., Mickel, L., Schuster, C., et al. (2011). Topical treatment of Basal cell carcinomas in nevoid Basal cell carcinoma syndrome with a smoothened inhibitor. J. Invest. Dermatol. 131, 1735–1744.
  26. Pan, S., Wu, X., Jiang, J., Gao, W., Wan, Y., Cheng, D., Han, D., Liu, J., Englund, N.P., Wang, Y., et al. (2010). Discovery of NVP-LDE225, a Potent and Selective Smoothened Antagonist. ACS Med. Chem. Lett. 1, 130–134.
  27. Mohler, J. (1988). Requirements for hedgehog, a segmental polarity gene, in patterning larval and adult cuticle of Drosophila. Genetics 120, 1061–1072.
  28. ZOLLINGER, R.M., and ELLISON, E.H. (1955). Primary peptic ulcerations of the jejunum associated with islet cell tumors of the pancreas. Ann. Surg. 142, 709–723; discussion, 724– 728.
  29. Stecca, B., Mas, C., Clement, V., Zbinden, M., Correa, R., Piguet, V., Beermann, F., and Ruiz I Altaba, A. (2007). Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc. Natl. Acad. Sci. U.S.A. 104, 5895–5900.
  30. Mitry, E., Baudin, E., Ducreux, M., Sabourin, J.C., Rufié, P., Aparicio, T., Aparicio, T., Lasser, P., Elias, D., Duvillard, P., et al. (1999). Treatment of poorly differentiated neuroendocrine tumours with etoposide and cisplatin. Br. J. Cancer 81, 1351–1355.
  31. Szot, G.L., Koudria, P., and Bluestone, J.A. (2007). Murine Pancreatic Islet Isolation. J Vis Exp.
  32. Thayer, S.P., di Magliano, M.P., Heiser, P.W., Nielsen, C.M., Roberts, D.J., Lauwers, G.Y., Qi, Y.P., Gysin, S., Fernández-del Castillo, C., Yajnik, V., et al. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856.
  33. Sanchez, P., Hernández, A.M., Stecca, B., Kahler, A.J., DeGueme, A.M., Barrett, A., Beyna, M., Datta, M.W., Datta, S., and Ruiz i Altaba, A. (2004). Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc. Natl. Acad. Sci. U.S.A. 101, 12561– 12566.
  34. Rudin, C.M., Hann, C.L., Laterra, J., Yauch, R.L., Callahan, C.A., Fu, L., Holcomb, T., Stinson, J., Gould, S.E., Coleman, B., et al. (2009). Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178.
  35. Weber, H.C., Venzon, D.J., Lin, J.T., Fishbein, V.A., Orbuch, M., Strader, D.B., Gibril, F., Metz, D.C., Fraker, D.L., and Norton, J.A. (1995). Determinants of metastatic rate and survival in patients with Zollinger-Ellison syndrome: a prospective long-term study. Gastroenterology 108, 1637–1649.
  36. Murray-Lyon, I.M., Eddleston, A.L., Williams, R., Brown, M., Hogbin, B.M., Bennett, A., Edwards, J.C., and Taylor, K.W. (1968). Treatment of multiple-hormone-producing malignant islet-cell tumour with streptozotocin. Lancet 2, 895–898.
  37. Raymond, E., Dahan, L., Raoul, J.-L., Bang, Y.-J., Borbath, I., Lombard-Bohas, C., Valle, J., Metrakos, P., Smith, D., Vinik, A., et al. (2011). Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513.
  38. Pavel, M.E., Hainsworth, J.D., Baudin, E., Peeters, M., Hörsch, D., Winkler, R.E., Klimovsky, J., Lebwohl, D., Jehl, V., Wolin, E.M., et al. (2011). Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378, 2005– 2012.

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten