Publikationsserver der Universitätsbibliothek Marburg

Titel:Genome-wide analysis of dMi-2 binding sites
Autor:Mathieu, Eve-Lyne
Weitere Beteiligte: Brehm, Alexander (Prof. Dr.)
URN: urn:nbn:de:hebis:04-z2013-06655
DDC: Naturwissenschaften
Titel (trans.):Genomweite Untersuchung von dMi-2 Bindungstellen


Remodelierung, dMi-2, dMi-2 Drosophila, chromatin, Chromatin, Drosophila, remodeling
Referenziert von:

ATP-dependent chromatin remodelers regulate gene expression. The actions of chromatin remodelers on the nucleosome removal and assembly, the histone variants exchange and the modifications of the nucleosome array modify the accessibility of the transcriptional machinery to DNA. Transcription is also influenced by the chromatin context. Indeed, the presence of transcription factors, nucleosome-depleted regions and histone modifications, facilitate the recruitment of specific histone modifying enzymes, chromatin modifying enzymes and chromatin remodelers. Thus, several chromatin features influence the transcription outcome. The ATP-dependent chromatin remodeler dMi-2 is typically associated with transcription repression, but its implication in active transcription has also been reported. The dMi-2 binding sites on polytene chromosomes suggest that dMi-2 binds mainly in open chromatin regions. However, the resolution of polytene staining is approximate and does not give any information about the chromatin context surrounding dMi-2. Thus, the genome-wide dMi-2 binding sites have been identified by ChIP-sequencing and correlated with existing data of histone modifications, RNA polymerase II, nucleosome-depleted regions, transcription, transcription factors and chromatin states. All in all, dMi-2 is located in open chromatin regions and in vicinity of developmental genes. Although dMi-2 mainly represses the expression of its associated genes, it binds close to features linked to active transcription and it is enriched in promoters and in potential regulatory regions. Upon heat shock, the inducible hsp70 gene is actively transcribed, and dMi-2 is important for its expression. To investigate the factors influencing the recruitment of dMi-2 in a context of active transcription, the dMi-2 genome-wide binding sites in un-induced and heat shock conditions have been identified by ChIP-sequencing. dMi-2 is selectively enriched on 7 hsp genes. The chromatin features associated to the hsp70 promoter or a nucleosome-depleted region does not suffice to recruit dMi-2. Moreover, a strong transcription is not sufficient to recruit dMi-2, even though its recruitment on the heat shock genes is transcription dependent. Notably, dMi-2 distribution encompasses the gene body and extent beyond the polyadenylation site of the heat shock genes. Thus, the results suggest that dMi-2 follow the transcriptional activity.

Bibliographie / References

  1. Thomas, M.C. and C.M. Chiang. (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41(3): p. 105- ‐78.
  2. Krogan, N.J. et al. (2003b) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12(6): p. 1565- ‐76.
  3. Williams, C.J. et al. (2004) The chromatin remodeler Mi- ‐2β is required for CD4 expression and T cell development. Immunity 20(6): p. 719- ‐33.
  4. Schneider, I. (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27(2): p. 353- ‐65.
  5. Mandrioli, M. and F. Borsatti. (2006) DNA methylation of fly genes and transposons. Cell Mol Life Sci 63(17): p. 1933- ‐6.
  6. Bouazoune, K. and A. Brehm. (2006) ATP- ‐dependent chromatin remodeling complexes in Drosophila. Chromosome Res 14(4): p. 433- ‐49.
  7. Bowen, N.J. et al. (2004) Mi- ‐2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta 1677(1- ‐ 3): p. 52- ‐7.
  8. Chen, L. and J. Widom. (2005) Mechanism of transcriptional silencing in yeast. Cell 120(1): p. 37- ‐48.
  9. Rudolph, T. et al. (2007) Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3- ‐3. Mol Cell 26(1): p. 103- ‐15.
  10. Szutorisz, H. et al. (2005) The role of enhancers as centres for general transcription factor recruitment. Trends Biochem Sci 30(11): p. 593- ‐9.
  11. Soler, E. et al. (2011) A systems approach to analyze transcription factors in mammalian cells. Methods 53(2): p. 151- ‐62.
  12. Chi, P. et al. (2010), Covalent histone modifications- ‐- ‐ miswritten, misinterpreted and mis- ‐erased in human cancers. Nat Rev Cancer 10(7): p. 457- ‐69.
  13. Kumar, R. et al. (2003) Emerging roles of MTA family members in human cancers. Semin Oncol 30(5
  14. Sandelin, A. et al. (2004) JASPAR: an open- ‐access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32(Database issue): p. D91- ‐4.
  15. Tweedie, S. et al. (2009) FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res 37(Database issue): p. D555- ‐9.
  16. Morettini, S. et al. (2011) The chromodomains of CHD1 are critical for enzymatic activity but less important for chromatin localization. Nucleic Acids Res 39(8): p. 3103- ‐15.
  17. Yudkovsky, N. et al. (1999) Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev 13(18): p. 2369- ‐74.
  18. Zanton, S.J. and B.F. Pugh. (2006) Full and partial genome- ‐ wide assembly and disassembly of the yeast transcription machinery in response to heat shock. Genes Dev 20(16): p. 2250- ‐65.
  19. Taylor, I.C. et al. (1991) Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA- ‐binding domains. Genes Dev 5(7): p. 1285- ‐98.
  20. Xiong, W.C. and C. Montell. (1993) Tramtrack is a transcriptional repressor required for cell fate determination in the Drosophila eye. Genes Dev 7(6): p. 1085- ‐96.
  21. Xiong, W.C. et al. (1994) repo encodes a glial- ‐specific homeo domain protein required in the Drosophila nervous system. Genes Dev 8(8): p. 981- ‐94.
  22. Kunert, N. et al. (2003) A Dnmt2- ‐like protein mediates DNA methylation in Drosophila. Development 130(21): p. 5083- ‐90.
  23. Reynolds, N. et al. (2013) Transcriptional repressors: multifaceted regulators of gene expression. Development 140(3): p. 505- ‐12.
  24. Suppl 16): p. 30- ‐7. Kunert, N. and A. Brehm. (2009) Novel Mi- ‐2 related ATP- ‐ dependent chromatin remodelers. Epigenetics 4(4): p. 209- ‐11.
  25. Yoder, J.A. et al. (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8): p. 335- ‐40.
  26. Tweedie, S. et al. (1999) Vestiges of a DNA methylation system in Drosophila melanogaster? Nat Genet 23(4): p. 389- ‐90.
  27. Yamasaki, Y. and Y. Nishida. (2006) Mi- ‐2 chromatin remodeling factor functions in sensory organ development through proneural gene repression in Drosophila. Dev Growth Differ 48(7): p. 411- ‐8.
  28. Cho, Y. et al. (2005) Individual histone deacetylases in 8. References Kim, T.H. et al. (2005) A high- ‐resolution map of active promoters in the human genome. Nature 436(7052): p. 876- ‐80.
  29. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein- ‐dye binding. Anal Biochem 72: p. 248- ‐54.
  30. Spiegelman, B.M. and R. Heinrich. (2004) Biological control through regulated transcriptional coactivators. Cell 119(2): p. 157- ‐67.
  31. Tie, F. et al. (2009) CBP- ‐mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136(18): p. 3131- ‐41. 8. References Tulin, A. and A. Spradling. (2003) Chromatin loosening by poly- ‐[ADP- ‐ribose] polymerase (PARP) at Drosophila puff loci. Science 299(5606): p. 560- ‐2.
  32. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128(4): p. 693- ‐705.
  33. Murawska, M. et al. (2008) dCHD3, a novel ATP- ‐ dependent chromatin remodeler associated with sites of active transcription. Mol Cell Biol 28(8): p. 2745- ‐57.
  34. Kunert, N. et al. (2009) dMec: a novel Mi- ‐2 chromatin remodelling complex involved in transcriptional repression. Embo J 28(5): p. 533- ‐44.
  35. Tagle, D.A. et al. (1988) Embryonic ε and γ globin genes of a prosimian primate (Galago crassicaudatus): 8. References Nucleotide and amino acid sequences, developmental regulation and phylogenetic footprints. J Mol Biol 203(2): p. 439- ‐55.
  36. Zhang, H. et al. (2005) Genome- ‐wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123(2): p. 219- ‐31.
  37. Kuzmichev, A. et al. (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev 16(22): p. 2893- ‐905. 8. References Mahmoudi, T. et al. (2002) GAGA can mediate enhancer function in trans by linking two separate DNA molecules. Embo J 21(7): p. 1775- ‐81.
  38. Taverna, S.D. et al. (2007) How chromatin- ‐binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11): p. 1025- ‐40.
  39. Wu, C.H. et al. (2003) NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev 17(11): p. 1402- ‐14.
  40. Xue, Y. et al. (1998) NuRD, a novel complex with both ATP- ‐ dependent chromatin- ‐remodeling and histone deacetylase activities. Mol Cell 2(6): p. 851- ‐61.
  41. Secombe, J. 8. References Solari, F. and J. Ahringer. (2000) NuRD- ‐complex genes antagonise Ras- ‐induced vulval development in Caenorhabditis elegans. Curr Biol 10(4): p. 223- ‐6.
  42. Moshkin, Y.M. et al. (2012) Remodelers organize cellular chromatin by counteracting intrinsic histone- ‐DNA sequence preferences in a class- ‐specific manner. Mol Cell Biol 32(3): p. 675- ‐88.
  43. Zeitlinger, J. et al. (2007) RNA polymerase stalling at 8. References embryo and is regulated by gap and pair- ‐rule genes. Genesis 35(1): p. 31- ‐8.
  44. Nakayama, J. et al. (2001) Role of histone H3 lysine 9 8. References Reiter, L.T. et al. (2001) A systematic analysis of human disease- ‐associated gene sequences in Drosophila melanogaster. Genome Res 11(6): p. 1114- ‐25.
  45. Bridges, C.B. (1935) Salivary chromosome maps with a key to the banding of the chromosomes of Drosophila melanogaster. J. Hered 26: p. 60- ‐64. 8. References Celniker, S.E. and G.M. Rubin. (2003) The Drosophila melanogaster genome. Annu Rev Genomics Hum Genet 4: p. 89- ‐117.
  46. Yasui, D. et al. (2002) SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419(6907): p. 641- ‐5.
  47. Murawska, M. et al. (2011) Stress- ‐induced PARP activation mediates recruitment of Drosophila Mi- ‐ 8. References 2 to promote heat shock gene expression. PLoS Genet 7(7): p. e1002206.
  48. Udvardy, A. et al. (1985) The 87A7 chromomere. 8. References Wilkins, R.C. and J.T. Lis. (1997) Dynamics of potentiation and activation: GAGA factor and its role in heat shock gene regulation. Nucleic Acids Res 25(20): p. 3963- ‐8.
  49. Srinivasan, S. et al. (2005) The Drosophila trithorax group protein Kismet facilitates an early step in transcriptional elongation by RNA Polymerase II. Development 132(7): p. 1623- ‐35.
  50. Richter, K. et al. (2010) The heat shock response: life on 8. References Rubin, G.M. and E.B. Lewis. (2000) A brief history of Drosophila's contributions to genome research. Science 287(5461): p. 2216- ‐8.
  51. Murawsky, C.M. et al. (2001) Tramtrack69 interacts with the dMi- ‐2 subunit of the Drosophila NuRD chromatin remodelling complex. EMBO Rep 2(12): p. 1089- ‐94.
  52. Mannervik, M. et al. (1999) Transcriptional coregulators in development. Science 284(5414): p. 606- ‐9.
  53. Rybtsova, N. et al. (2007) Transcription- ‐coupled Mi- ‐2α acts as a novel co- ‐activator for human c- ‐ Myb. J Biol Chem 282(19): p. 13994- ‐4005.
  54. Geburtsort: Sorel- ‐Tracy, Kanada Familienstand: Verheiratet Schulsbildung: 1984- 1990 Elementary school, Sorel- ‐Tracy, Kanada 1990- 1995 Secondary school, Sorel- ‐Tracy, Kanada 1995- 1997 College, Sorel- ‐Tracy, Kanada Studium: 1997- 2000 Bachelor of Sciences (B.Sc), Biochemistry University of Sherbrooke, Sherbrooke, Kanada 2000- 2003 Master of Sciences (M.Sc), Pharmacology University of Sherbrooke, Sherbrooke, Kanada Wissenschafliche 2003- 2003 Tätigkeit: Technician Animal genomics Dairy and swine research and development center, Lennoxville, Kanada 9. Appendices 2003- 2004 Research assistant Department of Biology University of Sherbrooke, Sherbrooke, Canada 2004- 2006 Lab coordinator Department of Microbiology and Infectiology University of Sherbrooke, Sherbrooke Since 2007
  55. Workman, J.L. and R.E. Kingston. (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67: p. 545- ‐79.
  56. Wu, C. (1995) Heat shock transcription factors: structure and regulation.
  57. Schweinsberg, S. et al. (2004) The enhancer- ‐blocking activity of the Fab- 7 boundary from the Drosophila bithorax complex requires GAGA- ‐ factor- ‐binding sites. Genetics 168(3): p. 1371- ‐84.
  58. Wood, A. et al. (2003) The Paf1 complex is essential for histone monoubiquitination by the Rad6- ‐Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem 278(37): p. 34739- ‐42.
  59. Strahl, B.D. and C.D. Allis. (2000) The language of covalent histone modifications. Nature 403(6765): p. 41- ‐5.
  60. Breiling, A. et al. (2001) General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412(6847): p. 651- ‐5.
  61. Boettiger, A.N. and M. Levine. (2009) Synchronous and stochastic patterns of gene activation in the Drosophila embryo. Science 325(5939): p. 471- ‐3.
  62. Strutt, H. et al. (1997) Co- ‐localization of Polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. Embo J 16(12): p. 3621- ‐32.
  63. Squazzo, S.L. et al. (2002) The Paf1 complex physically and functionally associates with transcription elongation factors in vivo. Embo J, 21(7): p. 1764- ‐ 74. Srinivasan, L. and M.L.
  64. Bouazoune, K. et al. (2002) The dMi- ‐2 chromodomains are DNA binding modules important for ATP- ‐ dependent nucleosome mobilization. Embo J 21(10): p. 2430- ‐40.
  65. Krogan, N.J. et al. (2002) RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol 22(20): p. 6979- ‐92.
  66. Boehm, A.K. et al. (2003) Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 23(21): p. 7628- ‐37.
  67. References Biswas, D. et al. (2008) A role for Chd1 and Set2 in negatively regulating DNA replication in Saccharomyces cerevisiae. Genetics 178(2): p. 649- ‐ 59.
  68. Stokes, D.G. and R.P. Perry. (1995) DNA- ‐binding and chromatin localization properties of CHD1. Mol Cell Biol 15(5): p. 2745- ‐53.
  69. Yoshida, T. et al. (2008) The role of the chromatin remodeler Mi- ‐2β in hematopoietic stem cell self- ‐ renewal and multilineage differentiation. Genes Dev 22(9): p. 1174- ‐89.
  70. Woodage, T. et al. (1997) Characterization of the CHD family of proteins. Proc Natl Acad Sci U S A 94(21): p. 11472- ‐7.
  71. Muse, G.W. et al. (2007) RNA polymerase is poised for activation across the genome. Nat Genet 39(12): p. 1507- ‐11.
  72. Schuettengruber, B. et al. (2009) Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol 7(1): p. e13.
  73. Schultheisz, H.L. et al. (2009) Enzymatic synthesis and structural characterization of 13C, 15N- ‐poly- ‐ [ADP- ‐ribose]. J Am Chem Soc 131(40): p. 14571- ‐8.
  74. Musselman, C.A. et al. (2009) Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. Biochem J 423(2): p. 179- ‐87.
  75. Konev, A.Y. et al. (2007) CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo. Science 317(5841): p. 1087- ‐90.
  76. Brehm, A. et al. (2000) dMi- ‐2 and ISWI chromatin remodelling factors have distinct nucleosome binding and mobilization properties. Embo J 19(16): p. 4332- ‐41.
  77. Yuan, W. et al. (20119 H3K36 methylation antagonizes PRC2- ‐mediated H3K27 methylation. J Biol Chem 286(10): p. 7983- ‐9.
  78. Murawska, M. and A. Brehm. (2011) CHD chromatin remodelers and the transcription cycle. Transcription 2(6): p. 244- ‐53.
  79. Reynolds, N. et al. (2011) NuRD- ‐mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression.
  80. Reynolds, N. et al. (2012) NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment. Cell Stem Cell 10(5): p. 583- ‐94.
  81. Kutateladze, T.G. (2011) SnapShot: Histone readers. Cell 146(5): p. 842- ‐842 e1.
  82. Musselman, C.A. et al. (2012) Perceiving the epigenetic landscape through histone readers. Nat Struct Mol Biol 19(12): p. 1218- ‐27.
  83. Sterner, D.E. and S.L. Berger. (2000) Acetylation of histones and transcription- ‐related factors. Microbiol Mol Biol Rev 64(2): p. 435- ‐59.
  84. Wu, C. et al. (1979) The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell 16(4): p. 807- ‐14.
  85. Krogan, N.J. et al. (2003a) The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell 11(3): p. 721- ‐9.
  86. Revil, T. et al. (2010) Alternative splicing is frequent during early embryonic development in mouse. BMC Genomics 11: p. 399.

* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten