Publikationsserver der Universitätsbibliothek Marburg

Titel:Synthese und physiologische Funktion der chemischen Chaperone Ectoin und Hydroxyectoin
Autor:Pittelkow, Marco
Weitere Beteiligte: Bremer, Erhard (Prof. Dr. )
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2012/1048
URN: urn:nbn:de:hebis:04-z2012-10484
DOI: https://doi.org/10.17192/z2012.1048
DDC:570 Biowissenschaften, Biologie
Titel (trans.):Synthesis and physiological function of the chemical chaperones ectoine and hydroxyectoine
Publikationsdatum:2012-12-13
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
Ectoin, compatible solutes, osmolarity, ectoin, Kompatible Solute, Osmolaritaet

Zusammenfassung:
Eine unter Bakterien weit verbreitete Anpassungsstrategie an hyperosmotische Umgebungsbedingungen ist die Aufnahme oder die Synthese von osmotisch wirksamen Substanzen, die sogenannten kompatiblen Solute. In dieser Arbeit wurden hauptsächlich Aspekte aus dem Bereich der Synthese von den sogenannten kompatiblen Soluten aufgeklärt. Ein häufig genutztes kompatibles Solut in Bakterien ist das Tetrahydropyrimidinderivat Ectoin. Dieses kompatible Solut kann in einem weiteren enzymatischen Schritt durch eine Ectoin-Hydroxylase EctD zu Hydroxyectoin hydroxyliert werden. Um diese Hydroxylierungsreaktion besser zu verstehen, wurde in dieser Arbeit durch Röntgenstrukturanalysen die Kristallstruktur der Ectoin-Hydroxylase EctD aus V. salexigens in Zusammenarbeit mit der AG von Prof. Dr. K. Reuter (Universität Marburg) aufgeklärt. Die Ergebnisse aus der Kristallstruktur von EctD mit gebundenem Eisen, ein Vergleich des aktiven Zentrums der EctD Struktur mit Ectoin bindenden Substratproteinen aus Ectoin Transportern sowie der bioinformatische Vergleich von putativen EctD Proteinsequenzen führten zu einer Auswahl an Aminosäuren, die für eine Mutagenesestudie herangezogen wurden. Die Ergebnisse der Mutagenesestudie von hoch-konservierten Aminosäuren lieferten wichtige Informationen über deren Funktion und über den möglichen Synthesemechanismus des EctD Enzyms. Da man jedoch keine EctD Struktur mit gebundenem Substrat Ectoin oder Co-Substrat 2-Oxoglutarat erhalten konnte, wurden weitere potentielle Ectoin-Hydroxylasen aus verschiedenen Mikroorganismen kloniert und affinitätschromatographisch gereinigt. Alle gereinigten Ectoin-Hydroxylasen aus den Bakterien Sphingopyxis alaskensis, Geobacillus. sp. Y412MC10, Pseudomonas stutzeri A1501, Alkalilimnicola ehrlichi, Acidiphilium cryptum und Halomonas elongata sowie dem Crenarchaeon N. maritimus waren enzymatisch aktiv. Dazu wurden die genauen Essaybedingungen jeder Ectoin-Hydroxylase in Bezug auf pH-Wert, Temperatur, Salzkonzentration angepasst und optimiert. Danach erfolgte die enzymatische Charakterisierung und die Ermittlung der biochemischen Parameter wie Km, vmax und kcat. Durch weitere bioinformatische Analysen der ect Gene, die überwiegend als ein geschlossenes Gencluster in den Organismen organisiert sind, wurden weitere interessante Gene innerhalb des ect-Genclusters identifiziert. Dabei trat immer wieder ein für eine Aspartokinase kodierendes ask Gen auf. Die Aspartokinasen synthetisieren aus L-Aspartat den für die Ectoin Synthese wichtigen Vorläufer β-Aspartat-Semialdehyd im Zusammenschluss mit einem Asd Enzym. Im Genom des Bakteriums Pseudomonas stutzeri A1501 wurden zwei Gene für potentielle Aspartokinasen gefunden. Ein Gen befindet sich im ect-Gencluster und das zweite ask Gen ist an anderer Stelle im Genom lokalisiert. Die beiden Gene der Aspartokinasen wurden kloniert, die Proteine heterolog in E. coli produziert und durch enzymatische Tests charakterisiert. Diese Untersuchungen zeigten wichtige Unterschiede im Hinblick auf die Eigenschaften der beiden studierten Aspartokinasen in diesem Bakterium. In Wachstumsanalysen mit dem Actinomyceten Streptomyces coelicolor A3(2) wurde die physiologische Bedeutung der beiden kompatiblen Solute Ectoin und Hydroxyectoin untersucht. S. coelicolor wird durch Ectoin und Hydroxyectoin unter hohen osmotischen Bedingungen und hohen Temperaturen protektiert. Es konnte gezeigt werden, dass beim Einsatz eines 1:1 Gemischs von Ectoin und Hydroxyectoin diese Protektion am effektivsten ist. Des Weiteren wurde durch Transportstudien mit radioaktiv markiertem [14C]-Ectoin untersucht, bei welcher Salinität und bei welcher Temperatur die Aufnahme der kompatiblen Solute in S. coelicolor induziert wird. Durch die Kombination der beiden Stressfaktoren wie Hochsalz und hohe Temperatur, konnte gezeigt werden, dass in dieser Situation die Aufnahme am stärksten angeschaltet wird.

Bibliographie / References

  1. Bursy, J. (2005).Osmotisch regulierte Biosynthese der kompatiblen Solute Ectoin und Hydroxyectoin in Salibacillus salexigens: Biochemische Charakterisierung der Ectoin-Hydroxylase EctD und Identifizierung ihres Strukturgenes. In Fachbereich Biologie, pp. 179. Marburg: Philipps-Universität Marburg.
  2. Severin, J., A. Wohlfart und E. A. Galinski (1992). The predominant role of recently discovered tetrahydropyrimidines for the osmoadaptation of halophilic eubacteria. J Gen Microbiol 138, 1629-1638.
  3. Ono, H., K. Sawada, N. Khunajakr, T. Tao, M. Yamamoto, M. Hiramoto, A. Shinmyo, M. Takano und Y. Murooka (1999). Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J Bacteriol 181, 91-99.
  4. Oremland (2007). Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57, 504-512.
  5. Clifton, I. J., M. A. McDonough, D. Ehrismann, N. J. Kershaw, N. Granatino und C. J. Schofield (2006). Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins. J Inorg Biochem 100, 644-669.
  6. Clifton, I. J., L. C. Hsueh, J. E. Baldwin, K. Harlos und C. J. Schofield (2001). Structure of proline 3- hydroxylase. Evolution of the family of 2-oxoglutarate dependent oxygenases. Eur J Biochem 268, 6625- 6636.
  7. Schofield (2001). Alteration of the co-substrate selectivity of deacetoxycephalosporin C synthase. The role of arginine 258. J Biol Chem 276, 18290-18295.
  8. Letunic, I. und P. Bork (2007). Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127-128.
  9. Ziegler, C., E. Bremer und R. Kramer (2010). The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol 78, 13-34.
  10. Elkins, J. M., K. S. Hewitson, L. A. McNeill, J. F. Seibel, I. Schlemminger, C. W. Pugh, P. J. Ratcliffe und C. J. Schofield (2003). Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1 alpha. J Biol Chem 278, 1802-1806.
  11. Structure of human phytanoyl-CoA 2-hydroxylase identifies molecular mechanisms of refsum disease. J Biol Chem 280, 41101-41110.
  12. Valegard, K., A. C. T. v. Scheltinga, A. Dubus, G. Ranghino, L. M. Oster, J. Hajdu und I.Andersson (2004). The structural basis of cephalosporin formation in a mononuclear ferrous enzyme. Nat Struct Mol Biol 11, 95-101.
  13. Vargas, C., M. Jebbar, R. Carrasco, C. Blanco, M. I. Calderon, F. Iglesias-Guerra und J. J. Nieto (2006). Ectoines as compatible solutes and carbon and energy sources for the halophilic bacterium Chromohalobacter salexigens. J Appl Microbiol 100, 98-107.
  14. Arora, A., C. Ha und C. B. Park (2004). Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett 564, 121-125.
  15. Vargas (2006). The ectD gene, which is involved in the synthesis of the compatible solute hydroxyectoine, is essential for thermoprotection of the halophilic bacterium Chromohalobacter salexigens. J Bacteriol 188, 3774-3784.
  16. Sphingomonas alaskensis sp. nov., a dominant bacterium from a marine oligotrophic environment. Int J Syst Evol Microbiol 51, 73-79.
  17. De Vos (2003). Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. Int J Syst Evol Microbiol 53, 501-511.
  18. Bestvater, T., P. Louis und E. A. Galinski (2008). Heterologous ectoine production in Escherichia coli: by-passing the metabolic bottle-neck. Saline Systems 4, 12.
  19. Galinski, E. A., H. P. Pfeiffer und H. G. Truper (1985). 1,4,5,6-Tetrahydro-2-methyl-4- pyrimidinecarboxylic acid. A novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur J Biochem 149, 135-139.
  20. Rhodes, M. E., S. T. Fitz-Gibbon, A. Oren und C. H. House (2010). Amino acid signatures of salinity on an environmental scale with a focus on the Dead Sea. Environ Microbiol 12, 2613-2623.
  21. Mehta, P. K., T. I. Hale und P. Christen (1993). Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214, 549-561.
  22. da Costa, M. S., H. Santos und E. A. Galinski (1998). An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv Biochem Eng Biotechnol 61, 117-153.
  23. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
  24. Miller, J. H. (1992). A short course in baterial genetics. A laboratory manual and handbook for Escherichia coli and related bacteria, Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
  25. Garabito, M. J., D. R. Arahal, E. Mellado, M. C. Marquez und A. Ventosa (1997). Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J Syst Bacteriol 47, 735-741.
  26. Sauer, T. und E. A. Galinski (1998). Bacterial milking: A novel bioprocess for production of compatible solutes. Biotechnol Bioeng 59, 128.
  27. Black, S. und N. G. Wright (1955). beta-Aspartokinase and beta-aspartyl phosphate. J Biol Chem 213, 27-38.
  28. Solomon, E. I., A. Decker und N. Lehnert (2003). Bioinorganic Chemistry Special Feature: Non-heme iron enzymes: Contrasts to heme catalysis. Proc Natl Acad Sci U S A 100, 3589-3594.
  29. Trotsenko, Y. A. und V. N. Khmelenina (2002). Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177, 123-131.
  30. Cohen, G. N. und I. Saint-Girons (1987).Biosynthesis of threonine, lysine, and methionine. In In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 429-444. Edited by J. L.
  31. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.
  32. Pittelkow, M. und E. Bremer (2011).Cellular adjustments of Bacillus subtilis and other Bacilli to fluctuating salinities. In:Halophiles and Hypersaline Environments: Current Research and Future Trends. Edited by A. Ventosa, A. Ohren & Y. Ma. Heidelberg: Springer.
  33. Reshetnikov, A. S., V. N. Khmelenina und Y. A. Trotsenko (2006). Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph "Methylomicrobium alcaliphilum 20Z". Arch Microbiol 184, 286-297.
  34. Galinski, E. A. (1993). Compatible solutes of halophilic eubacteria: molecular principles, water-solute interactions, stress protection. Experientia 49, 487-496.
  35. Bentley, S. D., K. F. Chater, A. M. Cerdeno-Tarraga & other authors (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141-147.
  36. Göller, K., A. Ofer und E. A. Galinski (1998). Construction and characterization of an NaCl-sensitive mutant of Halomonas elongata impaired in ectoine biosynthesis. FEMS Microbiol Lett 161, 293-300.
  37. Bremer, E. und R. Krämer (2000). Coping with osmotic challenges:osmoregulation through accumulation and release of compatible solutes in bacteria. In Bacterial stress responses pp. 79 -97. Edited by G. Storz & R. Hengge-Aronis. Washington, DC, USA ASM Press.
  38. Zhang, Z., J. Ren, K. Harlos, C. H. McKinnon, I. J. Clifton und C. J. Schofield (2002). Crystal structure of a clavaminate synthase-Fe(II)-2-oxoglutarate-substrate-NO complex: evidence for metal centered rearrangements. FEBS Lett 517, 7-12.
  39. Clifton, I. J., L. X. Doan, M. C. Sleeman, M. Topf, H. Suzuki, R. C. Wilmouth und C. J. Schofield (2003). Crystal structure of carbapenem synthase (CarC). J Biol Chem 278, 20843-20850.
  40. Blasiak, L. C., F. H. Vaillancourt, C. T. Walsh und C. L. Drennan (2006). Crystal structure of the non- haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440, 368-371.
  41. Yoshida, A., T. Tomita, H. Kono, S. Fushinobu, T. Kuzuyama und M. Nishiyama (2009). Crystal structures of the regulatory subunit of Thr-sensitive aspartate kinase from Thermus thermophilus. FEBS J 276, 3124-3136.
  42. Costas, M., M. P. Mehn, M. P. Jensen und J. L. Que (2004). Dioxygen Activation at Mononuclear Nonheme Iron Active Sites: Enzymes, Models, and Intermediates. Chemical Reviews 104, 939-986.
  43. Welsh, D. T. (2000). Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24, 263-290.
  44. Lippert, K. und E. A. Galinski (1992b). Enzyme stabilisation by ectoine-type compatible solutes: protection against heating, freezing and drying. . Appl Microbiol Biotechnol 37, 61 -65
  45. Lippert, K. und E. A. Galinski (1992a). Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37, 61-65.
  46. Hamano, Y., I. Nicchu, T. Shimizu, Y. Onji, J. Hiraki und H. Takagi (2007). epsilon-Poly-L: -lysine producer, Streptomyces albulus, has feedback-inhibition resistant aspartokinase. Appl Microbiol Biotechnol 76, 873-882.
  47. Abbildung 64: Expressionsplasmid pMP48. Der Vektor pMP48 ist ein Derivat von pASG-IBA3 (IBA, Göttingen) mit der inserierten, für E. coli codon optimierten ectD Sequenz aus Acidiphilium cryptum und beinhaltet die Sequenzen um einen C-terminalen Strep-tag an das gewünschte Protein zu fusionieren.
  48. Lentzen, G. und T. Schwarz (2006). Extremolytes: natural compounds from extremophiles for versatile applications. Appl Microbiol Biotechnol 72, 623-634.
  49. Hausinger, R. P. (2004). FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol 39, 21-68.
  50. Bartens, W. (2001). "Forever young": Bakterien aus einem Wüstensee sollen die menschliche Haut vor Sonne und Wassermangel schützen. Die Zeit 41.
  51. Solomon, E. I., T. C. Brunold, M. I. Davis & other authors (2000). Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev 100, 235-350.
  52. Bourot, S., O. Sire, A. Trautwetter, T. Touze, L. F. Wu, C. Blanco und T. Bernard (2000). Glycine betaine-assisted protein folding in a lysA mutant of Escherichia coli. J Biol Chem 275, 1050-1056.
  53. Waino, M., B. J. Tindall, P. Schumann und K. Ingvorsen (1999). Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49 Pt 2, 821-831.
  54. Coquelle, N., R. Talon, D. H. Juers, E. Girard, R. Kahn und D. Madern (2010). Gradual adaptive changes of a protein facing high salt concentrations. J Mol Biol 404, 493-505.
  55. Vreeland, R. H., C. D. Litchfield, Martin. und E. Elliot (1980). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30, 485-495.
  56. Smirnoff, N. und Q. J. Cumbes (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28, 1057-1060.
  57. Trotsenko (2010). Identification and characterization of EctR1, a new transcriptional regulator of the ectoine biosynthesis genes in the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z. J Bacteriol 192, 410-417.
  58. Schrumpf, B., L. Eggeling und H. Sahm (1992). Isolation and prominent characteristics of an L-lysine hyperproducing strain of Corynebacterium glutamicum. Appl Microbiol Biotechnol 37, 566-571.
  59. Grant, W. D. (2004). Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359, 1249-1266.
  60. Holm, L. und C. Sander (1996). Mapping the protein universe. Science 273, 595-603.
  61. Schwibbert, K., A. Marin-Sanguino, I. Bagyan & other authors (2010). A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581(T). Environ Microbiol.
  62. Strieker, M., F. Kopp, C. Mahlert, L. O. Essen und M. A. Marahiel (2007). Mechanistic and structural basis of stereospecific Cbeta-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide. ACS Chem Biol 2, 187-196.
  63. Booth, I. R., M. D. Edwards, S. Black, U. Schumann und S. Miller (2007). Mechanosensitive channels in bacteria: signs of closure? Nat Rev Microbiol 5, 431-440.
  64. Galinski, E. A. und H. G. Trüper (1994). Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15, 95 -108.
  65. Sambrook, J., E. F. Fritsch und T. Maniatis (1989). Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor N.Y. Cold Spring Harbor Laboratory Press.
  66. Ryle, M. J. und R. P. Hausinger (2002). Non-heme iron oxygenases. Curr Opin Chem Biol 6, 193-201.
  67. Que, L., Jr. (2000). One motif--many different reactions. Nat Struct Biol 7, 182-184.
  68. Csonka, L. N. und W. Epstein (1996). Osmoregulation. In Escherichia coli and Salmonella typhimurium:cellular and molecular biology Edited by F. C. Neidhard, R. Curtiss III, J. L. Ingraham et al., ASM Press, Washington, D. C., USA. 1210-1223.
  69. Bursy, J., A. J. Pierik, N. Pica und E. Bremer (2007). Osmotically induced synthesis of the compatible solute hydroxyectoine is mediated by an evolutionarily conserved ectoine hydroxylase. J Biol Chem 282, 31147-31155.
  70. Persönliche Angaben Name Marco Pittelkow Geburtsdatum 27.07.1975 in Siegen Ausbildungsdaten 06/1996
  71. Canovas, D., N. Borges, C. Vargas, A. Ventosa, J. J. Nieto und H. Santos (1999). Role of Ngammaacetyldiaminobutyrate as an enzyme stabilizer and an intermediate in the biosynthesis of hydroxyectoine. Appl Environ Microbiol 65, 3774-3779.
  72. Andersson, M. M., J. D. Breccia und R. Hatti-Kaul (2000). Stabilizing effect of chemical additives against oxidation of lactate dehydrogenase. Biotechnol Appl Biochem 32, 145-153.
  73. Hopwood, D. A. (2007). Streptomyces in nature and medicine: the antibiotic makers. Oxford University Press, Oxford, United Kingdom.
  74. Helmetag, V., S. A. Samel, M. G. Thomas, M. A. Marahiel und L. O. Essen (2009). Structural basis for the erythro-stereospecificity of the L-arginine oxygenase VioC in viomycin biosynthesis. FEBS J 276, 3669-3682.
  75. Davidson, A. L., E. Dassa, C. Orelle und J. Chen (2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72, 317-364.
  76. Valegard, K., A. C. v. Scheltinga, M. D. Lloyd & other authors (1998). Structure of a cephalosporin synthase. Nature 394, 805-809.
  77. Lovenberg, W., B. B. Buchanan und J. C. Rabinowitz (1963). Studies on the Chemical Nature of Clostridial Ferredoxin. J Biol Chem 238, 3899-3913.
  78. Hegg, E. L. und J. L. Que (1997). The 2-His-1-carboxylate facial triad--an emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur J Biochem 250, 625-629.
  79. Peters, P., E. A. Galinski und H. G. Trüper (1990). The biosynthesis of ectoine. FEMS Microbiol Lett 71, 157-162.
  80. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin und D. G. Higgins (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876-4882.
  81. Inbar, L., F. Frolow und A. Lapidot (1993). The conformation of new tetrahydropyrimidine derivatives in solution and in the crystal. Eur J Biochem 214, 897-906.
  82. Purpero, V. und G. R. Moran (2007). The diverse and pervasive chemistries of the alpha-keto acid dependent enzymes. J Biol Inorg Chem 12, 587-601.
  83. Hanauske-Abel, H. M. und A. M. Popowicz (2003). The HAG mechanism: a molecular rationale for the therapeutic application of iron chelators in human diseases involving the 2-oxoacid utilizing dioxygenases.
  84. Branden, C. und J. Tooze (1999).The jelly roll barrel is usually divided into two sheets, pp. 77-78. New York, USA: Garland Publishing Inc.
  85. Flashman, E. und C. J. Schofield (2007). The most versatile of all reactive intermediates? Nat Chem Biol 3, 86-87.
  86. Graf, R., S. Anzali, J. Buenger, F. Pfluecker und H. Driller (2008). The multifunctional role of ectoine as a natural cell protectant. Clin Dermatol 26, 326-333.
  87. Arakawa, T. und S. N. Timasheff (1985). The stabilization of proteins by osmolytes. Biophys J 47, 411- 414.
  88. Inbar, L. und A. Lapidot (1988). The structure and biosynthesis of new tetrahydropyrimidine derivatives in actinomycin D producer Streptomyces parvulus. Use of 13 C-and 15 N-labeled L-glutamate and 13 C and 15 N NMR spectroscopy. J Biol Chem 263, 16014-16022.
  89. Phan, T. T. und W. Schumann (2009). Transcriptional analysis of the lysine-responsive and riboswitch- regulated lysC gene of Bacillus subtilis. Curr Microbiol 59, 463-468.
  90. Abitur am Gymnasium der Gemeinde Neunkirchen 07/1996-04/1997 Wehrdienstpflichtiger im 1. Sanitätsbataillon Rennerod 10/1997-10/2006 Studium der Biologie an der Philipps-Universität, Marburg Schwerpunkte: Mikrobiologie, Genetik, Informatik 10/2006-08/2007 Diplomarbeit am Fachbereich Biologie im Fachgebiet Mikrobiologie (AG Bremer) an der Philipps-Universität Marburg, " Gerichtete Mutagenese der Ectoin Hydroxylase EctD aus Salibacillus salexigens " 08/2007 Diplom in Biologie (Dipl.Biol.)
  91. Ludwig, W., O. Strunk, R. Westram & other authors (2004). ARB: a software environment for sequence data. Nucleic Acids Res 32, 1363-1371.
  92. Prescott, A. G. und M. D. Lloyd (2000). The iron(II) and 2-oxoacid-dependent dioxygenases and their role in metabolism. Nat Prod Rep 17, 367-383.
  93. Diamant, S., D. Rosenthal, A. Azem, N. Eliahu, A. P. Ben-Zvi und P. Goloubinoff (2003). Dicarboxylic amino acids and glycine-betaine regulate chaperone-mediated protein-disaggregation under stress. Mol Microbiol 49, 401-410.
  94. Reuter, K., M. Pittelkow, J. Bursy, A. Heine, T. Craan und E. Bremer (2010). Synthesis of 5- hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD. PloS one 5, e10647.
  95. Metcalf, W. W. und R. S. Wolfe (1998). Molecular Genetic Analysis of Phosphite and Hypophosphite Oxidation by Pseudomonas stutzeri WM88. J Bacteriol 180, 5547-5558.
  96. Ma, J., A. Campbell und S. Karlin (2002). Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. J Bacteriol 184, 5733-5745.
  97. Jebbar, M., R. Talibart, K. Gloux, T. Bernard und C. Blanco (1992). Osmoprotection of Escherichia coli by ectoine: uptake and accumulation characteristics. J Bacteriol 174, 5027-5035.
  98. Zhang, J. J., F. M. Hu, N. Y. Chen und H. Paulus (1990). Comparison of the three aspartokinase isozymes in Bacillus subtilis Marburg and 168. J Bacteriol 172, 701-708.
  99. Yang, C. G., C. Yi, E. M. Duguid, C. T. Sullivan, X. Jian, P. A. Rice und C. He (2008). Crystal structures of DNA/RNA repair enzymes AlkB and ABH2 bound to dsDNA. Nature 452, 961-965.
  100. Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 74, 7286-7296.
  101. M. Bollinger, Jr. (2009). Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Proc Natl Acad Sci U S A 106, 17723-17728.
  102. Lo, C. C., C. A. Bonner, G. Xie, M. D'Souza und R. A. Jensen (2009). Cohesion group approach for evolutionary analysis of aspartokinase, an enzyme that feeds a branched network of many biochemical pathways. Microbiol Mol Biol Rev 73, 594-651.
  103. Walker, C. B., J. R. de la Torre, M. G. Klotz & other authors (2010). Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea.
  104. You, Z., S. Omura, H. Ikeda, D. E. Cane und G. Jogl (2007). Crystal structure of the non-heme iron dioxygenase PtlH in pentalenolactone biosynthesis. J Biol Chem 282, 36552-36560.
  105. Hoffmann, T. und E. Bremer (2011). Protection of Bacillus subtilis against Cold Stress via Compatible- Solute Acquisition. J Bacteriol 193, 1552-1562.
  106. Holtmann, G. und E. Bremer (2004). Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J Bacteriol 186, 1683-1693.
  107. Csonka, L. N. (1989). Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53, 121-147.
  108. Hopwood, D. A. (1967). Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev 31, 373-403.
  109. Prabhu, J., F. Schauwecker, N. Grammel, U. Keller und M. Bernhard (2004). Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Appl Environ Microbiol 70, 3130-3132.
  110. Brown, A. D. (1976). Microbial water stress. Bacteriol Rev 40, 803-846.
  111. Ventosa, A., J. J. Nieto und A. Oren (1998). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62, 504-544.
  112. Incorporation of oxygen into the succinate co-product of iron(II) and 2-oxoglutarate dependent oxygenases from bacteria, plants and humans. FEBS Lett 579, 5170-5174.
  113. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure (Camb) 10, 93- 103.
  114. Hanekop, N., M. Hoing, L. Sohn-Bosser, M. Jebbar, L. Schmitt und E. Bremer (2007). Crystal structure of the ligand-binding protein EhuB from Sinorhizobium meliloti reveals substrate recognition of the compatible solutes ectoine and hydroxyectoine. J Mol Biol 374, 1237-1250.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten