Summary:
Humans and other primates perform multiple fast eye movements per second in
order to redirect gaze within the visual field. These so called saccades challenge visual perception: During the movement phases the projection of the outside world sweeps rapidly across the photoreceptors altering the retinal positions of objects that are otherwise stable in the environment. Despite this ever-changing sensory input, the brain creates the percept of a continuous, stable visual world. Currently, it is assumed that this perceptual stability is achieved by the synergistic interplay of multiple mechanisms, for example, a reduction of the sensitivity of the visual system around the time of the eye movement ('saccadic suppression') as well as transient reorganizations in the neuronal representations of space ('remapping').
This thesis comprises six studies on trans-saccadic perceptual stability.
Bibliographie / References
- Bremmer F (2000) Eye position effects in macaque area v4. Neuroreport 11(6):1277–1283
- Watson TL, Krekelberg B (2009) The relationship between saccadic suppression and perceptual stability. Curr Biol 19(12):1040–1043
- Wurtz RH (2008) Neuronal mechanisms of visual stability. Vision Res 48(20):2070– 2089
- Ross J, Morrone MC, Burr DC (1997) Compression of visual space before saccades. Nature 386:598–601
- Honda H (1989) Perceptual localization of visual stimuli flashed during saccades. PerceptPsychophys 45:162–174
- Kowler E, Anderson E, Dosher B, Blaser E (1995) The role of attention in the programming of saccades. Vision Res 35(13):1897–1916
- Deubel H, Schneider WX, Bridgeman B (1996) Postsaccadic target blanking pre- vents saccadic suppression of image displacement. Vision Res 36:985–996
- Collins T, Doré-Mazars K, Lappe M (2007) Motor space structures perceptual space: evidence from human saccadic adaptation. Brain Res 1172:32–39
- Frens MA, Opstal AJV (1997) Monkey superior colliculus activity during short- term saccadic adaptation. Brain Res Bull 43(5):473–483
- Dassonville P, Schlag J, Schlag-Rey M (1992) Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates. VisNeurosci 9:261–269
- Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43(6):482–489
- Moore T, Armstrong KM (2003) Selective gating of visual signals by microstim- ulation of frontal cortex. Nature 421(6921):370–373
- Sommer MA, Wurtz RH (2006) Influence of the thalamus on spatial visual pro- cessing in frontal cortex. Nature 444(7117):374–377
- Ungerleider LG, Galkin TW, Desimone R, Gattass R (2008) Cortical connections of area v4 in the macaque. Cereb Cortex 18(3):477–499
- Matin L, Pearce DG (1965) Visual perception of direction for stimuli during vol- untary saccadic eye movements. Science 148:1485–1488
- Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92
- Collins T, Rolfs M, Deubel H, Cavanagh P (2009) Post-saccadic location judg- ments reveal remapping of saccade targets to non-foveal locations. J Vis 9(5):29.1–29.9
- Schlack A, Sterbing-D'Angelo SJ, Hartung K, Hoffmann KP, Bremmer F (2005) Multisensory space representations in the macaque ventral intraparietal area. J Neurosci 25(18):4616–4625
- McLelland D, Ahmed B, Bair W (2009) Responses to static visual images in macaque lateral geniculate nucleus: implications for adaptation, negative after- images, and visual fading. J Neurosci 29(28):8996–9001
- McLaughlin S (1967) Parametric adjustment in saccadic eye movements. Percept Psychophys 2:359–362
- Tolias AS, Moore T, Smirnakis SM, Tehovnik EJ, Siapas AG, Schiller PH (2001) Eye movements modulate visual receptive fields of v4 neurons. Neuron 29:757– 767
- References References Lisberger SG (1998) Postsaccadic enhancement of initiation of smooth pursuit eye movements in monkeys. J Neurophysiol 79(4):1918–1930
- Sommer MA, Wurtz RH (2004) What the brain stem tells the frontal cortex. i. ocu- lomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. J Neurophysiol 91(3):1381–1402
- Awater H, Burr D, Lappe M, Morrone MC, Goldberg ME (2005) Effect of saccadic adaptation on localization of visual targets. J Neurophysiol 93(6):3605–3614
- Morrone MC, Ross J, Burr DC (1997) Apparent position of visual targets during real and simulated saccadic eye movements. JNeurosci 17:7941–7953
- Georg K, Lappe M (2009) Effects of saccadic adaptation on visual localization before and during saccades. Exp Brain Res 192(1):9–23
- Bridgeman B, Hendry D, Stark L (1975) Failure to detect displacement of the visual world during saccadic eye movements. Vision Res 15(6):719–722
- Bahcall DO, Kowler E (1999) Illusory shifts in visual direction accompany adap- tation of saccadic eye movements. Nature 400(6747):864–866
- Walker MF, Fitzgibbon EJ, Goldberg ME (1995) Neurons in the monkey supe- rior colliculus predict the visual result of impending saccadic eye movements. JNeurophysiol 73:1988–2003
- Klingenhoefer S, Bremmer F (2012) Perisaccadic response modulations in area v4 of the macaque monkey. In preparation
- Armstrong KM, Moore T (2007) Rapid enhancement of visual cortical response References Einhäuser W, Mundhenk TN, Baldi P, Koch C, Itti L (2007) A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition. J Vis 7(10):6.1–613
- Reppas JB, Usrey WM, Reid RC (2002) Saccadic eye movements modulate visual 2.6 Perisaccadic receptive field dynamics in area V4 of the macaque monkey during saccade adaptation References Armstrong KM, Moore T (2007) Rapid enhancement of visual cortical response discriminability by microstimulation of the frontal eye field. Proc Natl Acad Sci U S A 104(22):9499–9504
- Klingenhoefer S, Bremmer F (2011) Saccadic suppression of displacement in face of saccade adaptation. Vision Res 51(8):881–889
- Melis BJ, van Gisbergen JA (1996) Short-term adaptation of electrically induced saccades in monkey superior colliculus. J Neurophysiol 76(3):1744–1758
- Umeno MM, Goldberg ME (1997) Spatial processing in the monkey frontal eye field. i. predictive visual responses. JNeurophysiol 78:1373–1383
- Hopp JJ, Fuchs AF (2004) The characteristics and neuronal substrate of saccadic eye movement plasticity. Prog Neurobiol 72(1):27–53
- Andersen RA, Mountcastle VB (1983) The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 3(3):532–548
- Hamker FH, Zirnsak M, Calow D, Lappe M (2008) The peri-saccadic perception of objects and space. PLoS Comput Biol 4(2):e31 References von Holst H E Mittelstaedt (1950) Das reafferenzprinzip. wechselwirkungen zwis- chen zentralnervensystem und peripherie. Naturwissenschaften 37:464–476
- Zirnsak M, Lappe M, Hamker FH (2010) The spatial distribution of receptive field changes in a model of peri-saccadic perception: predictive remapping and shifts towards the saccade target. Vision Res 50(14):1328–1337
- Honda H (1991) The time courses of visual mislocalization and of extraretinal eye position signals at the time of vertical saccades. Vision Res 31:1915–1921
- Nakamura K, Colby CL (2002) Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proc Natl Acad Sci U S A 99(6):4026–4031
- Galletti C, Battaglini PP (1989) Gaze-dependent visual neurons in area v3a of monkey prestriate cortex. J Neurosci 9(4):1112–1125
- Hartmann TS, Bremmer F, Albright TD, Krekelberg B (2011) Receptive field positions in area mt during slow eye movements. J Neurosci 31(29):10,437– 10,444
- Morris AP, Kubischik M, Hoffmann KP, Krekelberg B, Bremmer F (2012) Dynam- ics of eye-position signals in the dorsal visual system. Curr Biol 22(3):173–179
- Pola J (2004) Models of the mechanism underlying perceived location of a perisac- cadic flash. Vision Res 44:2799–2813
- Bremmer F, Distler C, Hoffmann KP (1997a) Eye position effects in monkey cortex. ii. pursuit-and fixation-related activity in posterior parietal areas lip and 7a. JNeurophysiol 77:962–977