Publikationsserver der Universitätsbibliothek Marburg

Titel:Time-resolved photoluminescence spectroscopy of semiconductors for optical applications beyond the visible spectral range
Autor:Chernikov, Alexey A.
Weitere Beteiligte: Koch, Martin (Prof. Dr.)
Veröffentlicht:2012
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0102
DOI: https://doi.org/10.17192/z2012.0102
URN: urn:nbn:de:hebis:04-z2012-01028
DDC: Physik
Titel (trans.):Zeitaufgelöste Photolumineszenz-Spektroskopie von Halbleitern für optische Anwendungen jenseits des sichtbaren Spektrums
Publikationsdatum:2012-03-19
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
solid state physics, Festkörperphysik, Spektroskopie, spectroscopy

Summary:
Since the development of the first light-emitting diodes (LEDs) in the early 1960’s [1, 2], opto-electronic technology based on the semiconducting materials evolved rapidly in the last half of the century. Today, barely all aspects of the generation, control, and detection of light are potentially covered by the solid-state semiconductor devices. The reason is a unique combination of flexibility, low-cost fabrication, as well as compact packaging dimensions. In particular, scientific applications profit from the large tunability of the semiconductor diodes and lasers as well as from the high sensitivity of the detectors in a broad spectral range from the ultra-violett (UV) to the infra-red (IR) [4]. In addition, numerous industry branches successfully exploit solid-state light-sources for material processing, characterization, and quality testing [3]. Finally, the semiconductor-based emitters and detectors have already found their way into the everyday’s life. In many cases, the technology is subtly integrated and barely noticable, yet it is often the heart of the respective applications. High-brilliance LEDs provide images for the television projectors [6], compact lasers ensure rapid optical communication [5], and almost every photographer relies on cameras with silicon-based detectors, the so-called charge-coupled-devices or CCDs [7], only to name a few. Notably, the invention of the latter was honored with the Nobel Prize in Physics in 2009 [8]. Still, the journey is far from being over. The ever-increasing need for energy-saving lighting, faster optical communication, as well as for versatile optical sources in the growing field of the bio-physics anticipates and almost demands further technological advance. The research is aimed towards compact and low-cost lasers with high repetition rates in the near-infra-red (NIR) spectral range, bright, more efficient LEDs over the complete visible (VIS) spectrum, as well as strong and tunable lasers emitting in the ultra-violet (UV) wavelength region. In addition, transparent opto-electronic devices as well as the light-emitters on a scale as small as several nanometers are envisioned. To address these challenges, several steps are to be taken. First, a detailed understanding of the fundamental phenomena in semiconductors is required for a proper design of optical devices. The second, equally important procedure is the synthesis and the characterization of novel material systems suited for the desired applications over a broad spectral range. On this basis, semiconductor devices are finally developed and optimized to expoit their respective potential as well as to identify any fundamental restrictions. The work discussed in this thesis is focused on the experimental studies regarding these three steps: (1) investigation of the fundamental effects, (2) characterization of new material systems, and (3) optimization of the semiconductor devices. It goes without saying that only parts of the broad scientific fields are addressed. In all three cases, the experimental technique of choice is photoluminescence (PL) spectroscopy [9]. This method is based on the detection of light emitted by the photo-excited materials. Considering the possibility of spectrally-, temporally- and spatially-resolved measurements, PL spectroscopy remains a flexible and, most-important, a non-destructive probe for the optical response of semiconductors. The thesis is organized as follows. Chapter 2 gives a summary of the PL properties of semiconductors relevant for this work. The first section deals with the intrinsic processes in an ideal direct band gap material, starting with a brief summary of the theoretical background followed by the overview of a typical PL scenario. In the second part of the chapter, the role of the lattice-vibrations, the internal electric fields as well as the influence of the band-structure and the dielectric environment are discussed. Finally, extrinsic PL properties are presented in the third section, focusing on defects and disorder in real materials. In chapter 3, the experimental realization of the spectroscopic studies is discussed. The time-resolved photoluminescence (TRPL) setup is presented, focusing on the applied excitation source, non-linear frequency mixing, and the operation of the streak camera used for the detection. In addition, linear spectroscopy setup for continous-wave (CW) PL and absorption measurements is illustrated. Chapter 4 aims at the study of the interactions between electrons and lattice-vibrations in semiconductor crystals relevant for the proper description of carrier dynamics as well as the heat-transfer processes. The presented discussion covers the experimental studies of many-body effects in phonon-assisted emission of semiconductors due to the carriercarrier Coulomb-interaction [10, 11]. The corresponding theoretical background is discussed in detail in chapter 2. The investigations are focused on the two main questions regarding electron-hole plasma contributions to the phonon-assisted light-matter interaction as well as the impact of Coulomb-correlations on the carrier-phonon scattering. The experiments presented in chapter 5 deal with the characterization of recently synthesizedmaterial systems: ZnO/(ZnMg)O heterostructures, GaN quantumwires (QWires), as well as (GaAs)Bi quantum wells (QWs). The former two materials are designed for potential electro-optical applications in the UV spectral range [12, 13]. TRPL spectroscopy is applied to gain insight as well as a better understanding of the respective carrier relaxation and recombination processes crucial for the device operation. The latter material system, Ga(AsBi), is a possible candidate for light-emitting devices in the NIR, at the telecom wavelengths of 1.3 μm and 1.55 μm[14]. The main hallmark of this semiconductor is the giant band gap reduction with Bi content [22], unusually large for more typical compound materials [15]. The aim of the studies is the systematic investigation of carrier dynamics influenced by disorder. The measurements are supported by kinetic Monte- Carlo simulations [23], providing a quantitative analysis of carrier localization effects. In chapter 6, optimization and characterization studies of semiconductor lasers, based on the well-studied (GaIn)As material system designed for NIR applications, are performed. The device under investigation is the so-called vertical-external-cavity surfaceemitting laser (VECSEL) [16, 17]. This laser perfectly combines the excellent beam quality of surface emitters and the high output power of semiconductor edge-emitting diodelasers. VECSELs are available in a broad spectral range [18], offer efficient intra-cavity frequency mixing [19] combined with frequency stabilization [20], and are able to operate in a pulsed regime, emitting ultra-short sub-500 fs pulses [21]. For the majority of the applications high output power of the device remains crucial. The performance of the laser, however, is typically limited by the heating of the device during the operation. The experiments focus on the study of the thermal properties of a high-power VECSEL. The distribution and removal of the excess heat as well as the optimization of the laser for increased performance are adressed applying different heat-spreading and heat-transfer approaches. Based on these investigations, the possibility for power-scaling is evaluated and the underlying restrictions are analyzed. The latter investigations are performed applying spatially-resolved PL spectroscopy. An experimental setup is designed for monitoring the spatial distribution of heat in the semiconductor structure during laser operation. A brief summary of the experimental findings and the resulting conclusions are given in the chapter 7 in the end of the thesis.

Bibliographie / References

  1. T. Feldtmann, " Influence of phonons on semiconductor quantum emission, " Ph.D. thesis, Philipps Universität Marburg (2009).
  2. R. Slusher and C. Weisbuch, " Optical microcavities in condensed matter systems, " Solid State Communications 92, 149 (1994).
  3. C. Adelmann, E. Sarigiannidou, D. Jalabert, Y. Hori, J.-L. Rouviere, B. Daudin, S. Fanget, C. Bru-Chevallier, T. Shibata, and M. Tanaka, " Growth and optical properties of GaN/AlN quantum wells, " Applied Physics Letters 82, 4154 (2003).
  4. S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H. Gibbs, W. Hoyer, M. Kira, S. Koch, J. Prineas, and H. Stolz, " Excitonic photoluminescence in semiconductor quantum wells: plasma versus excitons, " Physical Review Letters 92, 2 (2004).
  5. F. Bernardini, V. Fiorentini, and D. Vanderbilt, " Spontaneous polarization and piezoelectric constants of III-V nitrides, " Physical Review B 56, R10024 (1997).
  6. S. Nakamura, S. Pearton, and G. Fasol, The blue laser diode: the complete story (Springer, 2010).
  7. G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy: Theory and Practice (Academic Press, 1999), 2nd ed.
  8. Arlt, U. Siegner, J. Kunde, F. Morier-Genoud, and U. Keller, " Ultrafast dephasing of continuum transitions in bulk semiconductors, " Physical Review B 59, 14860 (1999).
  9. M. Kira and S. Koch, " Many-body correlations and excitonic effects in semiconductor spec- troscopy, " Progress in Quantum Electronics 30, 155 (2006).
  10. E. Gatti, A. Giorgioni, E. Grilli, A. Chernikov, S. Chatterjee, D. Chrastina, G. Isella, and M. Guzzi, "Photoluminescence decay of direct and indirect transitions in Ge/SiGe multiple quantum wells", Journal of Applied Physics, accepted for publication (2011).
  11. R. Hall, G. Fenner, J. Kingsley, T. Soltys, and R. Carlson, " Coherent light emission from GaAs junctions, " Physical Review Letters 9, 366 (1962).
  12. F. Giustino, M. L. Cohen, and S. G. Louie, " Small phonon contribution to the photoemission kink in the copper oxide superconductors. " Nature 452, 975–8 (2008).
  13. B. Guo, Z. R. Qiu, and K. S. Wong, " Intensity dependence and transient dynamics of donor- acceptor pair recombination in ZnO thin films grown on (001) silicon, " Applied Physics Letters 82, 2290 (2003).
  14. W.-K. Hong, G. Jo, M. Choe, T. Lee, J. I. Sohn, and M. E. Welland, " Influence of sur- face structure on the phonon-assisted emission process in the ZnO nanowires grown on homoepitaxial films, " Applied Physics Letters 94, 043103 (2009).
  15. N. S. Köster, K. Kolata, R. Woscholski, C. Lange, G. Isella, D. Chrastina, H. von Känel, and S. Chatterjee, " Giant dynamical Stark shift in germanium quantum wells, " Applied Physics Letters 98, 161103 (2011).
  16. W. Shockley and W. Read, " Statistics of the recombinations of holes and electrons, " Physi- cal Review 87, 835 (1952).
  17. Rudin, T. Reinecke, and B. Segall, " Temperature-dependent exciton linewidths in semi- conductors, " Physical Review B 42, 11218 (1990).
  18. M. Kira and S. W. Koch, " Microscopic theory of optical excitations, photoluminescence, and terahertz response in semiconductors, " The European Physical Journal D 36, 143 (2005).
  19. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, " Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power, " Applied Physics Letters 80, 3892 (2002).
  20. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, " How many-particle interactions develop after ultrafast excitation of an electron-hole plasma. " Nature 414, 286–9 (2001).
  21. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiet- tekatte, " Molecular beam epitaxy growth of GaAsBi, " Applied Physics Letters 82, 2245 (2003).
  22. J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, and B. Gayral, " Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires, " Physical Re- view B 80, 121305(R) (2009).
  23. S.-M. Li, B.-J. Kwon, H.-S. Kwack, L.-H. Jin, Y.-H. Cho, Y.-S. Park, M.-S. Han, and Y.-S. Park, " Optical transition dynamics in ZnO/ZnMgO multiple quantum well structures with different well widths grown on ZnO substrates, " Journal of Applied Physics 107, 033513 (2010).
  24. W. Diehl, P. Brick, S. Chatterjee, S. Horst, K. Hantke, W. W. Rühle, W. Stolz, A. Thrän- hardt, and S. W. Koch, " Dynamic behavior of 1040 nm semiconductor disk lasers on a nanosecond time scale, " Applied Physics Letters 90, 241102 (2007).
  25. O. Rubel, S. Baranovskii, K. Hantke, B. Kunert, W. Ruhle, P. Thomas, K. Volz, and W. Stolz, " Kinetic effects in recombination of optical excitations in disordered quantum heterostructures: Theory and experiment, " Journal of Luminescence 127, 285 (2007).
  26. K. Hantke, J. D. Heber, S. Chatterjee, P. J. Klar, K. Volz, W. Stolz, W. W. Ruhle, A. Poli- meni, and M. Capizzi, " Carrier relaxation dynamics in annealed and hydrogenated GaIn- NAs/GaAs quantum wells, " Applied Physics Letters 87, 252111 (2005).
  27. P. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Material Properties (Springer-Verlag Berlin / Heidelberg / New Yourk, 2005), 3rd ed.
  28. A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T.- L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, " Heat management in high-power vertical-external-cavity surface-emitting lasers, " IEEE Journal of Selected Topics in Quantum Electronics 17, 1772 (2011).
  29. M. Leroux, N. Grandjean, M. Laügt, J. Massies, B. Gil, P. Lefebvre, and P. Bigenwald, " Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells, " Physical Review B 58, R13371 (1998).
  30. M. Kira, F. Jahnke, and S. Koch, " Microscopic Theory of Excitonic Signatures in Semicon- ductor Photoluminescence, " Physical Review Letters 81, 3263 (1998).
  31. C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, " 65 years of ZnO research -old and very recent results, " Physica Status Solidi (b) 247, 1424 (2010).
  32. J. Lee, S. Lee, T. Kim, and Y. Park, " 7 W high-efficiency continuous-wave green light generation by intracavity frequency doubling of an end-pumped vertical external-cavity surface emitting semiconductor laser, " Applied Physics Letters 89, 241107 (2006).
  33. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Späth, " 8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm, " Applied Physics Letters 82, 3620 (2003).
  34. T. Fleck, M. Schmidt, and C. Klingshirn, " Absolute external luminescence quantum effi- ciency of GaAs/Al0.3Ga0.7As multiple quantum wells, " Physica Status Solidi (a) 198, 248 (2003).
  35. J. Gutowski, N. Presser, and I. Broser, " Acceptor-exciton complexes in ZnO: A compre- hensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy, " Physical Review B 38, 9746 (1988).
  36. Cho, and H. MorkocÌ §, " A comprehensive review of ZnO materials and devices, " Journal of Applied Physics 98, 041301 (2005).
  37. M. Holm, D. Burns, A. Ferguson, and M. Dawson, " Actively stabilized single-frequency vertical-external-cavity AlGaAs laser, " IEEE Photonics Technology Letters 11, 1551 (1999).
  38. B. Bansal, V. K. Dixit, V. Venkataraman, and H. L. Bhat, " Alloying induced degradation of the absorption edge of InAsSb, " Applied Physics Letters 90, 101905 (2007).
  39. Strite and H. Morkoc, " GaN, AIN, and InN: A review, " J. Vac. Sci. Technol. B 10, 1237 (1992).
  40. W. Shan, K. M. Yu, W. Walukiewicz, J. Wu, J. W. Ager, and E. E. Haller, " Band anticrossing in dilute nitrides, " Journal of Physics: Condensed Matter 16, S3355 (2004).
  41. Y. Zhang, " Behavior of nitrogen impurities in III-V semiconductors, " Journal of Lumines- cence 85, 247–260 (2000).
  42. S. Francoeur, S. Tixier, E. Young, T. Tiedje, and A. Mascarenhas, " Bi isoelectronic impuri- ties in GaAs, " Physical Review B 77, 1 (2008).
  43. J. L. A. Chilla, " Blue and green optically pumped semiconductor lasers for display, " in " Proceedings of SPIE, " , vol. 5740 (SPIE, 2005), vol. 5740, p. 41.
  44. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straß burg, M. Dworzak, U. Haboeck, and a. V. Rodina, " Bound exciton and donor-acceptor pair recombinations in ZnO, " Physica Status Solidi (b) 241, 231 (2004).
  45. E. Bogardus and H. Bebb, " Bound-exciton, free-exciton, band-acceptor, donor-acceptor, and Auger recombination in GaAs, " Physical Review 176, 993 (1968).
  46. A. Chernikov, S. Horst, M. Koch, K. Volz, S. Chatterjee, S. W. Koch, T. A. Wass- ner, B. Laumer, and M. Eickhoff, "Carrier dynamics in (ZnMg)O alloy materials", Physica Status Solidi (c) 8, 1149 (2011).
  47. K. Kash and J. Shah, " Carrier energy relaxation in In0.53Ga0.47As determined from pi- cosecond luminescence studies, " Applied Physics Letters 45, 401 (1984).
  48. W. S. Boyle and G. E. Smith, " Charge coupled semiconductor devices, " Bell Sys. Tech. J. 49, 587 (1970).
  49. Wissenschaftlicher Werdegang Alexej A. Chernikov geboren am 17. November 1982 in Sankt-Petersburg (Russland) 2003 Abitur am Humboldt-Gymnasium Bad Homburg 2003 -2008 Studium der Physik an der Philipps-Universität Marburg (Diplom) seit 2008 Promotion an der Philipps-Universität Marburg, Fachbere- ich Physik, AG Experimentelle Halbleiterphysik bei Prof. Dr. Martin Koch Originalveröffentlichungen
  50. D. Oberhauser, K. H. Pantke, W. Langbein, V. G. Lyssenko, H. Kalt, J. M. Hvam, G. Weimann, and C. Klingshirn, " Coherent and incoherent exciton dynamics in Al- GaAs/GaAs multiple quantum wells, " Physica Status Solidi (b) 173, 53 (1992).
  51. N. Holonyak and S. F. Bevacqua, " Coherent (visible) light emission from Ga(AsP) junc- tions, " Applied Physics Letters 1, 82 (1962).
  52. A. Mascarenhas, R. Kini, Y. Zhang, R. France, and A. Ptak, " Comparison of the dilute bismide and nitride alloys GaAsBi and GaAsN, " Physica Status Solidi (b) 246, 504 (2009).
  53. C. Lange, N. S. Köster, S. Chatterjee, H. Sigg, D. Chrastina, G. Isella, H. von Känel, B. Kunert, and W. Stolz, " Comparison of ultrafast carrier thermalization in GaInAs and Ge quantum wells, " Physical Review B 81 (2010).
  54. S.-H. Park and S.-L. Chuang, " Comparison of zinc-blende and wurtzite GaN semicon- ductors with spontaneous polarization and piezoelectric field effects, " Journal of Applied Physics 87, 353 (2000).
  55. X. Lu, D. a. Beaton, R. B. Lewis, T. Tiedje, and Y. Zhang, " Composition dependence of photoluminescence of GaAsBi alloys, " Applied Physics Letters 95, 041903 (2009).
  56. A. Hangleiter, F. Hitzel, S. Lahmann, and U. Rossow, " Composition dependence of polar- ization fields in GaInN/GaN quantum wells, " Applied Physics Letters 83, 1169 (2003).
  57. Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, " Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator, " Optics Letters 33, 1705 (2008).
  58. D. Hägele, R. Zimmermann, M. Oestreich, M. Hofmann, W. Rühle, B. Meyer, H. Amano, and I. Akasaki, " Cooling dynamics of excitons in GaN, " Physical Review B 59, R7797 (1999).
  59. H. Lobentanzer, H.-J. Polland, W. W. Rühle, W. Stolz, and K. Ploog, " Cooling of hot carri- ers in GaInAs, " Applied Physics Letters 51, 673 (1987).
  60. S. Takeoka, M. Fujii, S. Hayashi, and K. Yamamoto, " Decay dynamics of near-infrared photoluminescence from Ge nanocrystals, " Applied Physics Letters 74, 1558 (1999).
  61. J. Szczytko, L. Kappei, J. Berney, F. Morier-Genoud, M. Portella-Oberli, and B. Deveaud, " Determination of the exciton formation in quantum wells from time-resolved interband luminescence, " Physical Review Letters 93, 13 (2004).
  62. T. K. Hatwar and J. Spindler, " Development of white OLED technology for application in full-color displays and solid-state lighting, " in " Luminescent materials and applications, " , A. Kitai, ed. (John Wiley & Sons Ltd., 2008).
  63. C. Metzner, K. Schrüfer, U. Wieser, M. Luber, M. Kneissl, and G. Döhler, " Disorder effects on luminescence in delta-doped n-i-p-i superlattices, " Physical Review B 51, 5106 (1995).
  64. P. Wiesner and U. Heim, " Dynamics of exciton-polariton recombination in CdS, " Physical Review B 11, 3071 (1975).
  65. K. Hantke, " Einflußvon Stickstoff auf die Photolumineszenz von metastabilen III-V- Nitriden K, " Ph.D. thesis (2005).
  66. D. Miller, D. Chemla, T. Damen, A. Gossard, W. Wiegmann, T. Wood, and C. Burrus, " Electric field dependence of optical absorption near the band gap of quantum-well struc- tures, " Physical Review B 32, 1043 (1985).
  67. J. Zippel, M. Stölzel, A. Müller, G. Benndorf, M. Lorenz, H. Hochmuth, and M. Grund- mann, " Electronic coupling in ZnO/Mg ZnO double quantum wells grown by pulsed-laser deposition, " Physica Status Solidi (b) 247, 398 (2010).
  68. H. Fröhlich, " Electrons in lattice fields, " Advances in Physics 3, 325 (1954).
  69. S. Paul, J. B. Roy, and P. K. Basu, " Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaInAs, " 69, 827 (1991).
  70. H. Zhao and H. Kalt, " Energy-dependent Huang-Rhys factor of free excitons, " Physical Review B 68, 125309 (2003).
  71. S. Jankowski, S. Horst, A. Chernikov, S. Chatterjee, and W. Heimbrodt, "Energy transfer processes in ZnSe/(Zn,Mn)Se double quantum wells", Physical Review B 80, 155315 (2009).
  72. P. Yu and C. Hermann, " Excitation spectroscopies of impurities in CdSe, " Physical Review B 23, 4097 (1981).
  73. B. Laumer, T. A. Wassner, F. Schuster, M. Stutzmann, J. Schörmann, M. Rohnke, A. Chernikov, V. Bornwasser, M. Koch, S. Chatterjee, and M. Eickhoff, " Exciton con- finement in homo-and heteroepitaxial ZnO/ZnMgO quantum wells with x < 0.1, " Journal of Applied Physics 110, 093513 (2011).
  74. J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, " Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition, " Journal of Applied Physics 85, 7884 (1999).
  75. C. Litton, D. Reynolds, T. Collins, and Y. Park, " Exciton-LO-phonon interaction and the anti-Stokes emission line in CdS, " Physical Review Letters 25, 1619 (1970).
  76. R. Dwiliski, R. Doradzinski, J. Garczyski, L. SierzputowskiI, B. J. M., and M. Kasmin- ska, " Exciton photo-luminescence of GaN bulk crystals grown by the AMMONO method, " Materials Science and Engineering B 50, 46 (1997).
  77. D. Thomas and J. Hopfield, " Exciton spectrum of cadmium sulfide, " Physical Review 116, 573 (1959).
  78. C. Gourdon and P. Lavallard, " Exciton transfer between localized states in CdSSe alloys, " Physica Status Solidi (b) 153, 641 (1989).
  79. J. Haynes, " Experimental proof of the existence of a new electronic complex in Silicon, " Physical Review Letters 4, 361 (1960).
  80. G. Mak and W. Rühle, " Femtosecond carrier dynamics in Ge measured by a luminescence up-conversion technique and near-band-edge infrared excitation, " Physical Review B 52, R11584 (1995).
  81. D. Kovalev, B. Averboukh, D. Volm, B. Meyer, H. Amano, and I. Akasaki, " Free exciton emission in GaN, " Physical Review B 54, 2518 (1996).
  82. Chu, " GaN-based diodes and transistors for chemical, gas, biological and pressure sensing, " Journal of Physics: Condensed Matter 16, R961 (2004).
  83. B. Amstatt, J. Renard, C. Bougerol, E. Bellet-Amalric, B. Gayral, and B. Daudin, " Growth of m-plane GaN quantum wires and quantum dots on m-plane 6H-SiC, " Journal of Applied Physics 102, 074913 (2007).
  84. Y. Goldberg and N. Schmidt, Handbook Series on Semiconductor Parameters (World Sci- entific, London, 1999).
  85. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, " High-power (>0.5W cw) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams, " IEEE Phot. Techn. Lett. 9, 1063 (1997).
  86. W. J. Alford, T. D. Raymond, and A. A. Allerman, " High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser, " Journal of the Optical Society of America B 19, 663 (2002).
  87. M. A. Holm, D. Burns, P. Cusumano, A. I. Ferguson, and M. D. Dawson, " High-power diode-pumped AlGaAs surface-emitting laser, " Applied Optics 38, 5781 (1999).
  88. J. L. A. Chilla, High-power optically pumped semiconductor lasers (SPIE, 2004).
  89. R. Haring, M. Paschotta, A. Aschwanden, E. Gini, F. Morier-Genoud, and U. Keller, " High- power passively mode-locked semiconductor lasers, " IEEE Journal of Quantum Electronics 38, 1268 (2002).
  90. C. Wagner, " Hopping von Exzitonen in ungeordneten Halbleiterstrukturen und Halbleiter- nanokristallen, " Ph.D. thesis (2011).
  91. N. Balkan, ed., Hot electrons in semiconductors (Clarendon Press, Oxford, 1998).
  92. R. Stanley, J. Hegarty, R. Fischer, J. Feldmann, E. Göbel, R. Feldman, and R. Austin, " Hot- exciton relaxation in CdZnTe/ZnTe multiple quantum wells, " Physical Review Letters 67, 128 (1991).
  93. A. Miller and E. Abrahams, " Impurity conduction at low concentrations, " Physical Review 120, 745 (1960).
  94. V. Härle, H. Bolay, E. Lux, P. Michler, A. Moritz, T. Forner, A. Hangleiter, and F. Scholz, " Indirect-band-gap transition in strained GaInAs/InP quantum-well structures, " Journal of Applied Physics 75, 5067 (1994).
  95. M. Schafer, W. Hoyer, M. Kira, S. W. Koch, and J. V. Moloney, " Influence of dielectric environment on quantum-well luminescence spectra, " Journal of the Optical Society of America B 25, 187 (2008).
  96. A. Chernikov, J. Herrmann, M. Scheller, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, " Influence of the spatial pump distribution on the performance of high power vertical-external-cavity surface-emitting lasers, " Applied Physics Letters 97, 191110 (2010).
  97. E. Yablonovitch, " Inhibited spontaneous emission in solid-state physics and electronics, " Physical Review Letters 58, 2059 (1987).
  98. C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Talier- cio, M. Teisseire-Doninelli, B. Vinter, and C. Deparis, " Internal electric field in wurtzite ZnO/ZnMgO quantum wells, " Physical Review B 72, 2 (2005).
  99. A. Chernikov, S. Horst, S. W. Koch, S. Chatterjee, W. W. Rühle, J. Sweet, B. Richards, J. Hendrickson, G. Khitrova, and H. M. Gibbs, "Intra-dot relaxation and dephasing rates from time-resolved photoluminescence from InAs quantum dot ensembles", Solid State Communications 149, 1485 (2009).
  100. A. Chernikov, S. Horst, M. Koch, K. Volz, S. Chatterjee, S. Koch, T. Wassner, B. Laumer, and M. Eickhoff, " Investigation of carrier dynamics in ZnMgO by time-resolved photolu- minescence, " Journal of Luminescence 130, 2256 (2010).
  101. J. C. Ion, Laser processing of engeneering materials: principle, procedures and industrial applications (Elsevier Butterworth-Heinemann, 2005).
  102. D. Ouadjaout and Y. Marfaing, " Localized excitons in II-VI semiconductor alloys: Density- of-states model and photoluminescence line-shape analysis, " Physical Review B 41, 12096 (1990).
  103. M. Kozhevnikov, B. Ashkinadze, E. Cohen, and A. Ron, " LO-phonon sideband photolumi- nescence in pure GaAs, " Solid State Communications 106, 73 (1998).
  104. L. Cerutti, A. Garnache, F. Genty, A. Ouvrard, and C. Alibert, " Low threshold, room tem- perature laser diode pumped Sb-based VECSEL emitting around 2.1 microns, " Electronics Letters 39, 290 (2003).
  105. S. Heitsch, G. Zimmermann, D. Fritsch, C. Sturm, R. Schmidt-Grund, C. Schulz, H. Hochmuth, D. Spemann, G. Benndorf, B. Rheinländer, T. Nobis, M. Lorenz, and M. Grundmann, " Luminescence and surface properties of MgZnO thin films grown by pulsed laser deposition, " Journal of Applied Physics 101, 083521 (2007).
  106. W. I. Park, G.-C. Yi, and H. M. Jang, " Metalorganic vapor-phase epitaxial growth and pho- toluminescent properties of ZnMgO thin films, " Applied Physics Letters 79, 2022 (2001).
  107. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, " MgZnO as a II-VI widegap semiconductor alloy, " Applied Physics Letters 72, 2466 (1998).
  108. S. Koch, T. Meier, F. Jahnke, and P. Thomas, " Microscopic theory of optical dephasing in semiconductors, " Applied Physics A: Materials Science & Processing 71, 511 (2000).
  109. S. Imhof, C. Bückers, A. Thränhardt, J. Hader, J. V. Moloney, and S. Koch, " Microscopic theory of the optical properties of Ga(AsBi)/ GaAs quantum wells, " 23, 125009 (2008).
  110. W. Huang, K. Oe, G. Feng, and M. Yoshimoto, " Molecular-beam epitaxy and characteristics of GaNAsBi, " Journal of Applied Physics 98, 053505 (2005).
  111. K. Oe and H. Okamoto, " New semiconductor alloy GaAsB grown by metal organic vapor phase epitaxy, " Japanese Journal of Applied Physics 37, L1283 (1998).
  112. H. Polland, W. Rühle, J. Kuhl, K. Ploog, K. Fujiwara, and T. Nakayama, " Nonequilib- rium cooling of thermalized electrons and holes in GaAs/AlGaAs quantum wells, " Physical Review B 35, 8273 (1987).
  113. G. Khitrova and H. M. Gibbs, " Nonlinear optics of normal-mode-coupling semiconductor microcavities, " Reviews of Modern Physics 71, 1591 (1999).
  114. Y. J. Ding, J. V. D. Veliadis, and J. B. Khurgin, " Nonradiative recombination and saturation of traps in multiple intrinsic quantum wells, " Journal of Applied Physics 75, 1727 (1994).
  115. E. Kühn, A. Thränhardt, C. Bückers, S. W. Koch, J. Hader, and J. V. Moloney, " Numerical study of the influence of an antireflection coating on the operating properties of vertical- external-cavity surface-emitting lasers, " Journal of Applied Physics 106, 063105 (2009).
  116. J. Li, K. B. Nam, J. Y. Lin, and H. X. Jiang, " Optical and electrical properties of Al-rich AlGaN alloys, " Applied Physics Letters 79, 3245 (2001).
  117. A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas, and O. W. Holland, " Optical and structural properties of epitaxial MgZnO alloys, " Applied Physics Letters 75, 3327 (1999).
  118. K. Reimann, R. Kaindl, and M. Woerner, " Optical deformation-potential scattering of holes in multiple quantum well structures, " Physical Review B 65, 045302 (2001).
  119. S. Permogorov, " Optical emission due to exciton scattering by LO phonons in semicon- ductors, " in " Excitons, " , E. I. Rashba and M. Sturge, eds. (North-Holland, Amsterdam, 1982).
  120. W. Stadler, D. Hofmann, H. Alt, T. Muschik, B. Meyer, E. Weigel, G. Müller-Vogt, M. Salk, E. Rupp, and K. Benz, " Optical investigations of defects in Cd1-xZnxTe, " Physical Review B 51, 10619 (1995).
  121. T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eick- hoff, " Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy, " Journal of Applied Physics 105, 023505 (2009).
  122. X. W. Zhang and J. B. Xia, " Optical properties of GaN wurtzite quantum wires, " Journal of Physics: Condensed Matter 18, 3107 (2006).
  123. F. Furtmayr, M. Vielemeyer, M. Stutzmann, A. Laufer, B. K. Meyer, and M. Eickhoff, " Op- tical properties of Si-and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy, " Journal of Applied Physics 104, 074309 (2008).
  124. A. Chernikov, S. Chatterjee, M. Koch, C. Bückers, S. W. Koch, S. Imhof, A. Thrän- hardt, X. Lu, S. R. Johnson, D. A. Beaton, and T. Tiedje, "Optical spectroscopy of Bi containing semiconductors", in "Conference on Lasers and Electro-Optics", JWA94(2010).
  125. A. Müller, M. Stölzel, C. Dietrich, G. Benndorf, M. Lorenz, and M. Grundmann, " Origin of the near-band-edge luminescence in MgZnO alloys, " Journal of Applied Physics 107, 013704 (2010).
  126. S. Hoogland, S. Dhanjal, A. Tropper, J. Roberts, R. Haring, R. Paschotta, F. Morier- Genoud, and U. Keller, " Passively mode-locked diode-pumped surface-emitting semicon- ductor laser, " IEEE Photonics Technology Letters 12, 1135 (2000).
  127. A. Chernikov, V. Bornwasser, M. Koch, S. Chatterjee, C. N. Böttge, T. Feldtmann, M. Kira, T. A. Wassner, S. Lautenschläger, B. K. Meyer, and S. W. Koch, " Phonon-assisted lumines- cence in polar semiconductors -Fröhlich coupling versus deformation potential scattering, " Physical Review B, accepted for publication (2011).
  128. T. Feldtmann, M. Kira, and S. W. Koch, " Phonon sidebands in semiconductor lumines- cence, " Physica Status Solidi (b) 246, 332 (2009).
  129. J. Shah, " Photoexcited hot LO phonons in GaAs, " Solid State Communications 8, 1089 (1970).
  130. Yoon, M. J. Seong, B. Fluegel, A. Mascarenhas, S. Tixier, and T. Tiedje, " Photogenerated plasmons in GaAsBi, " Applied Physics Letters 91, 082101 (2007).
  131. E. Gatti, E. Grilli, M. Guzzi, D. Chrastina, G. Isella, A. Chernikov, V. Bornwasser, N. S. Köster, R. Woscholski, M. Koch, and S. Chatterjee, "Photoluminescence and ultra-fast intra-subband relaxation in Ge/SiGe multiple quantum wells" Physcal Re- view B, accepted for publication (2011).
  132. A. Chernikov, S. Horst, T. Waitz, M. Tiemann, and S. Chatterjee, "Photolumines- cence properties of ordered mesoporous ZnO", The Journal of Physical Chemistry C 115, 1375 (2011).
  133. R. Westphaling, " Photoluminescence quantum efficiency and dynamics in ZnSeTe and CdSSe mixed crystals, " Journal of Luminescence 72-74, 980 (1997).
  134. M. Oueslati, M. Zouaghi, M. Pistol, L. Samuelson, H. Grimmeiss, and M. Balkanski, " Pho- toluminescence study of localization effects induced by the fluctuating random alloy poten- tial in indirect band-gap GaAsP, " Physical Review B 32, 8220 (1985).
  135. S. Prabhu, A. Vengurlekar, and J. Shah, " Picosecond-luminescence study of exciton forma- tion dynamics in CdSe, " Physical Review B 53, R10465 (1996).
  136. A. Chernikov, C. N. Böttge, T. Feldtmann, S. Chatterjee, M. Koch, M. Kira, and S. W. Koch, "Plasma-related phonon-sideband emission in semiconductors", Phys- ica Status Solidi (c) 8, 1129 (2011).
  137. A. Chernikov, S. Horst, S. W. Koch, S. Chatterjee, W. W. Rühle, J. Sweet, B. C. Richards, J. Hendrickson, G. Khitrova, H. M. Gibbs, D. Litvinov, D. Gerthsen, and M. Wegener, "Polarization conservation and dephasing in InAs quantum dot ensembles", in Proc. SPIE, 75971R (2010),
  138. T. Itoh, M. Nishijima, A. Ekimov, C. Gourdon, A. Efros, and M. Rosen, " Polaron and exciton-phonon complexes in CuCl nanocrystals, " Physical Review Letters 74, 1645 (1995).
  139. A. Maclean, A. Kemp, and D. Burn, " Power-scaling of a 1060nm semiconductor disk laser with a diamond heatspreader, " Conf. on Lasers and Electro-Optics, San Jose p. JThA10 (2008).
  140. M. E. Levinshtein, S. L. Rumyantsev, and S. S. Shur, Properties of advanced semiconductor materials: GaN, AlN, InN, BN, SiC, SiGe (Wiley-Interscience, 2001), 1st ed.
  141. Fukatsu, " Quantitative analysis of light emission from SiGe quantum wells, " Journal of Crystal Growth 157, 1 (1995).
  142. O. Rubel, M. Galluppi, S. D. Baranovskii, K. Volz, L. Geelhaar, H. Riechert, P. Thomas, and W. Stolz, " Quantitative description of disorder parameters in (GaIn)(NAs) quantum wells from the temperature-dependent photoluminescence spectroscopy, " Journal of Ap- plied Physics 98, 063518 (2005).
  143. C. Bückers, E. Kühn, C. Schlichenmaier, S. Imhof, A. Thränhardt, J. Hader, J. V. Moloney, O. Rubel, W. Zhang, T. Ackemann, and S. W. Koch, " Quantum modeling of semiconductor gain materials and vertical-external-cavity surface-emitting laser systems, " Physica Status Solidi (b) p. 789 (2010).
  144. L. Andreani, " Radiative lifetime of free excitons in quantum wells, " Solid State Communi- cations 77, 641 (1991).
  145. C. a la Guillaume, J.-M. Debever, and F. Salvan, " Radiative recombination in highly excited CdS, " Physical Review 177, 567 (1969).
  146. T. V. Shubina, a. a. Toropov, O. G. Lublinskaya, P. S. Kopev, S. V. Ivanov, A. El-Shaer, M. Al-Suleiman, A. Bakin, A. Waag, A. Voinilovich, E. V. Lutsenko, G. P. Yablonskii, J. P. Bergman, G. Pozina, and B. Monemar, " Recombination dynamics and lasing in ZnO/ZnMgO single quantum well structures, " Applied Physics Letters 91, 201104 (2007).
  147. P. Landsberg, Recombination in semiconductors, vol. 5 (Cambridge University Press, Cam- bridge, 1991).
  148. J. Collet, H. Kalt, L. Dang, J. Cibert, K. Saminadayar, and S. Tatarenko, " Relaxation of excitons in coherently strained CdTe/ZnTe quantum wells, " Physical Review B 43, 6843 (1991).
  149. N. Schulz, M. Rattunde, C. Ritzenthaler, B. Rösener, C. Manz, K. Köhler, J. Wagner, and U. Brauch, " Resonant optical in-well pumping of an (AlGaIn)(AsSb)-based vertical- external-cavity surface-emitting laser emitting at 2.35 microns, " Applied Physics Letters 91, 091113 (2007).
  150. W. Harrison, " Scattering of electrons by lattice vibrations in nonpolar crystals, " Physical Review 104, 1281 (1956).
  151. N. Ashcroft and N. Mermin, Solid State Physics (Cengage Learning Emea, 1976).
  152. G. Ciatto, E. Young, F. Glas, J. Chen, R. Mori, and T. Tiedje, " Spatial correlation between Bi atoms in dilute GaAsBi: From random distribution to Bi pairing and clustering, " Physical Review B 78, 1 (2008).
  153. T. Niebling, O. Rubel, W. Heimbrodt, W. Stolz, S. D. Baranovskii, P. J. Klar, and J. F. Geisz, " Spectral and time dependences of the energy transfer of bound optical excitations in GaP(N), " Journal of Physics: Condensed Matter 20, 015217 (2008).
  154. O. Rubel, W. Stolz, and S. D. Baranovskii, " Spectral dependence of the photoluminescence decay in disordered semiconductors, " Applied Physics Letters 91, 021903 (2007).
  155. D. Braun, W. Rühle, C. Trallero-Giner, and J. Collet, " Spectroscopic determination of the optical deformation-potential constant in semiconductors, " Physical Review Letters 67, 2335 (1991).
  156. S.-H. Park and D. Ahn, " Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers, " Applied Physics Letters 87, 253509 (2005).
  157. J. Coleman, " Strained-layer quantum well heterostructure lasers, " Thin Solid Films 216, 68 (1992).
  158. A. Ait_ouali, R. Y.-F. Yip, J. L. Brebner, and R. A. Masut, " Strain relaxation and exciton localization effects on the Stokes shift in InAsP/InP multiple quantum wells, " Journal of Applied Physics 83, 3153 (1998).
  159. G. Perna, V. Capozzi, and M. Ambrico, " Structural properties and photoluminescence study of CdSe/Si epilayers deposited by laser ablation, " Journal of Applied Physics 83, 3337 (1998).
  160. J. Hader, J. V. Moloney, and S. W. Koch, " Supression of carrier recombination in semicon- ductor lasers by phase-space filling, " Applied Physics Letters 87, 201112 (2005).
  161. H. D. Sun, T. Makino, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, " Temperature dependence of excitonic absorption spectra in ZnO/ZnMgO multiquantum wells grown on lattice-matched substrates, " Applied Physics Letters 78, 2464 (2001).
  162. Y. Varshni, " Temperature dependence of the energy gap in semiconductors, " Physica 34, 149 (1967).
  163. D. P. Popescu, P. G. Eliseev, A. Stintz, and K. J. Malloy, " Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained GaInAs quantum well, " Semiconductor Science and Technology 19, 33 (2004).
  164. S. Baranovskii, R. Eichmann, and P. Thomas, " Temperature-dependent exciton lumines- cence in quantum wells by computer simulation, " Physical Review B 58, 13081 (1998).
  165. A. Toropov, O. Nekrutkina, T. Shubina, T. Gruber, C. Kirchner, A. Waag, K. Karlsson, P. Holtz, and B. Monemar, " Temperature-dependent exciton polariton photoluminescence in ZnO films, " Physical Review B 69, 1 (2004).
  166. D. Thomas, " The exciton spectrum of zinc oxide, " Journal of Physics and Chemistry of Solids 15, 86 (1960).
  167. A. van Dijken, E. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, " The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission, " Bibliography
  168. C. Klingshirn, " The luminescence of ZnO under high one-and two-quantum excitation, " Physica Status Solidi (b) 71, 547 (1975).
  169. Http://www.nobelprize.org/nobel_prizes/physics/laureates/2009/, " The Nobel Prize in Physics 2009, " .
  170. T. Feldtmann, M. Kira, and S. Koch, " Theoretical analysis of higher-order phonon side- bands in semiconductor luminescence spectra, " Journal of Luminescence 130, 107 (2010).
  171. A. Janotti, S.-H. Wei, and S. Zhang, " Theoretical study of the effects of isovalent coalloying of Bi and N in GaAs, " Physical Review B 65, 115203 (2002).
  172. K. Huang and A. Rhys, " Theory of light absorption and non-radiative transitions in F- centres, " Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 204, 406 (1950).
  173. W. Pötz and P. Vogl, " Theory of optical-phonon deformation potentials in tetrahedral semi- conductors, " Physical Review B 24, 2025 (1981).
  174. A. Chernikov, T. Feldtmann, S. Chatterjee, M. Koch, M. Kira, and S. W. Koch, " Time- resolved phonon-sideband spectroscopy, " Solid State Communications 150, 1733 (2010).
  175. C. Lange, S. Chatterjee, C. Schlichenmaier, A. Thränhardt, S. W. Koch, W. W. Rühle, J. Hader, J. V. Moloney, G. Khitrova, and H. M. Gibbs, " Transient gain spectroscopy of (GaIn)As quantum wells: Experiment and microscopic analysis, " Applied Physics Letters 90, 251102 (2007).
  176. P. Michler, A. Lohner, W. W. Rühle, and G. Reiner, " Transient pulse response of In- GaAs/GaAs microcavity lasers, " Applied Physics Letters 66, 1599 (1995).
  177. R. A. Kaindl, M. A. Carnahan, D. Hägele, R. Lövenich, and D. S. Chemla, " Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas. " Nature 423, 734–8 (2003).
  178. K. Alberi, O. D. Dubon, W. Walukiewicz, K. M. Yu, K. Bertulis, and A. Krotkus, " Valence band anticrossing in GaBiAs, " Applied Physics Letters 91, 051909 (2007).
  179. A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, " Vertical- external-cavity semiconductor lasers, " Journal of Physics D: Applied Physics 37, R75 (2004).
  180. A. Chernikov, M. Koch, B. Laumer, T. A. Wassner, M. Eickhoff, S. W. Koch, and S. Chatterjee, "Intra-excitonic relaxation dynamics in ZnO", Applied Physics Let- ters 99, 231910 (2011).
  181. J. Moloney, J. Hader, and S. Koch, " Quantum design of semiconductor active materials: laser and amplifier applications, " Laser & Photonics Review 1, 24 (2007).
  182. M. Umlauff, J. Hoffmann, H. Kalt, W. Langbein, J. Hvam, M. Scholl, J. Söllner, M. Heuken, B. Jobst, and D. Hommel, " Direct observation of free-exciton thermalization in quantum- well structures, " Physical Review B 57, 1390 (1998).
  183. D. Turchinovich, B. S. Monozon, and P. U. Jepsen, " Role of dynamical screening in exci- tation kinetics of biased quantum wells: Nonlinear absorption and ultrabroadband terahertz emission, " Journal of Applied Physics 99, 013510 (2006).
  184. A. Minnaert, A. Silov, W. van der Vleuten, J. Haverkort, and J. Wolter, " Fröhlich interaction in InAs/GaAs self-assembled quantum dots, " Physical Review B 63, 075303 (2001).
  185. K. Kazlauskas, G. Tamulaitis, A. Zukauskas, M. A. Khan, J. W. Yang, J. Zhang, G. Simin, M. S. Shur, and R. Gaska, " Double-scaled potential profile in a group-III nitride alloy re- vealed by Monte Carlo simulation of exciton hopping, " Applied Physics Letters 83, 3722 (2003).
  186. S. Smith, J.-M. Hopkins, J. Hastie, D. Burns, S. Calvez, M. Dawson, T. Jouhti, J. Kontin- nen, and M. Pessa, " Diamond-microchip GaInNAs vertical external-cavity surface-emitting laser operating CW at 1315 nm, " Electronics Letters 40, 935 (2004).
  187. S. Calvez, J. Hastie, M. Guina, O. Okhotnikov, and M. Dawson, " Semiconductor disk lasers for the generation of visible and ultraviolet radiation, " Laser & Photonics Review 3, 407 (2009).
  188. A. J. Maclean, R. B. Birch, P. W. Roth, A. J. Kemp, and D. Burns, " Limits on efficiency and power scaling in semiconductor disk lasers with diamond heatspreaders, " Journal of the Optical Society of America B 26, 2228 (2009).
  189. W. Zhang, A. McDonald, T. Ackemann, E. Riis, and G. McConnell, " Femtosecond syn- chronously in-well pumped vertical-external-cavity surface-emitting laser, " Optics Express 18, 187 (2009).
  190. D. Reynolds, D. Look, B. Jogai, C. Litton, G. Cantwell, and W. Harsch, " Valence-band ordering in ZnO, " Physical Review B 60, 2340 (1999).
  191. T. Makino, C. H. Chia, N. T. Tuan, H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, " Room-temperature luminescence of excitons in ZnO/(MgZn)O multiple quantum wells on lattice-matched substrates, " Applied Physics Letters 77, 975 (2000).
  192. H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, " Phonon replicas in ZnO/ZnMgO multiquantum wells, " Journal of Applied Physics 91, 6457 (2002).
  193. M. Cobet, C. Cobet, M. R. Wagner, N. Esser, C. Thomsen, and A. Hoffmann, " Polariton ef- fects in the dielectric function of ZnO excitons obtained by ellipsometry, " Applied Physics Letters 96, 031904 (2010).
  194. T. D. Raymond, W. J. Alford, M. H. Crawford, and A. A. Allerman, " Intracavity frequency doubling of a diode-pumped external-cavity surface-emitting semiconductor laser, " Optics Letters 24, 1127 (1999).
  195. M. Kira, F. Jahnke, W. Hoyer, and S. Koch, " Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures, " Progress in Quantum Electronics 23, 189 (1999).
  196. H. Haug and S. W. Koch, Quantum theory of the optical and electronic properties of semi- conductors (World Scientific, Singapore, 2009), 5th ed.
  197. J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cam- bridge University Press, 2003), 1st ed.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten