Publikationsserver der Universitätsbibliothek Marburg

Titel: Self-assembling polycations for gene delivery: Effects of polymer structure and environmental pH
Autor: Samsonova, Olga
Weitere Beteiligte: Kissel, Thomas (Prof. Dr.)
Veröffentlicht: 2012
URI: https://archiv.ub.uni-marburg.de/diss/z2012/0101
DOI: https://doi.org/10.17192/z2012.0101
URN: urn:nbn:de:hebis:04-z2012-01017
DDC: Naturwissenschaften
Titel(trans.): Selbst-organisierende polykationische Polymere für Gentransfer: Effekte von Polymerstruktur und pH der Umgebung
Publikationsdatum: 2012-03-19
Lizenz: https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
RNS-Interferenz, Transfektion, pHEMA-Kopplung, PEG-PCL-PEI, Polymersteifigkeit, RAFT <Polymerisation>, Wasserkraftfeld, Gentherapie, isothermale Titrationskalorimetrie, Konformation, chain flexibility, molecular dynamic simulation, DNS, Toxizität, pDMAEMA-b-pHEMA, in vitro

Summary:
ZUSAMMENFASSUNG In der vorliegenden Arbeit wurden innovative polymerische Vektoren, die für die Durchführung von Gentransfers entwickelt gewesen sind, vorgestellt. Hierbei richtete sich der besondere Akzent auf den Zusammenhang zwischen Struktur und Funktion sowohl aus physikalisch-chemischen als auch biologischen Blickpunkten. Zuerst wurden die für eine Transfektion relevanten Unterschiede von klassischen Vektoren mit hohem und niedrigem Verzweigungsgrad - PEI und PLL - unter alternierenden pH-Bedingungen von Krebsgewebe untersucht. Weiter wurde strukturelles Design für siRNA-Transfer auf Basis von PEG-PCL-PEI, einem multi-funktionellen selbst-assoziierenden ABC-Konstrukt, mit Betonung der Wichtigkeit der gesamten Hydrophilie-Lipophilie-Bilanz für effiziente Stilllegung der Genfunktion vorgeschlagen. Für Transport und Zustellung von DNA wurde ein neuer niedermolekularer diblock pDMAEMA-Abkömmling synthetisiert und charakterisiert, wonach der Vektor sich als effizient und geringfügig toxisch erwiesen hat. Der Zusammenhang zwischen pHEMA-Gehalt und Flexibilität der Polymerkette konnte mittels Dynamischer Simulation (MD) aufgeklärt werden. Die Besonderheiten zu thermodynamischen Aspekten von Polymer-DNA Bindung, die an die Glaspunkttemperatur (Tg) gekoppelt zu sein scheinen, wurden mittels ITC beobachtet. Sowohl die MD als auch die ITC- Methodiken lieferten neue Informationen zum Cargo-Carrier- Selbstorganisationsprozess in Lösung, welche wichtig in Bezug auf die Transfektionsleistung der Diblock-Copolymere sind.

Zusammenfassung:
SUMMARY In this thesis, novel polycationic vectors for therapeutic gene delivery were introduced with the focus on structure-function relationship in both physicochemical and biological aspects. First the transfection related differences of classical vectors with high and low branching grade and charge density: PEI and PLL, were examined under pH-alternating tumor tissue conditions. Further structural design for siRNA delivery was proposed on base of PEG-PCL-PEI multifunctional self-assembly ABC-construct, showing the importance of total hydrophilic-lipophilic balance for efficient gene silencing performance. For DNA delivery a new low molecular weight di-block pDMAEMA derivative was synthesized and characterized, proving it to be a low toxic and efficient vector. The relationship between pHEMA-content and polymer chain flexibility was assessed via molecular dynamics simulation (MD). The thermodynamic polymer-DNA binding characteristics, monitored via ITC, appeared to depend on glass transition temperatue (Tg). The use of both MD and ITC methodologies provided new information on the cargo-carrier self-assembly process in solution, relevant to transfection performance of diblock-copolymers.

Bibliographie / References

  1. York, A.W.; Kirkland, S.E.; McCormick, C.L. Advances in the Synthesis of Amphiphilic Block Copolymers via RAFT Polymerization: Stimuli-Responsive Drug and Gene Delivery. Adv. Drug Delivery Rev. 2008, 60, 1018-1036.
  2. Scales, C.W.; Huang, F.; Li, N.; Vasilieva, Y.A.; Ray, J.; Convertine, A.J.; McCormick, C.L. Corona- Stabilized Interpolyelectrolyte Complexes of SiRNA with Nonimmunogenic, Hydrophilic/Cationic Block Copolymers Prepared by Aqueous RAFT Polymerization. Macromolecules 2006, 39, 6871-6881.
  3. Mitsukami, Y.; Donovan, M.S.; Lowe, A.B.; McCormick, C.L. Water-Soluble Polymers. 81. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymers and Block Copolymers in Aqueous Solution via RAFT. Macromolecules 2001, 34, 2248-2256.
  4. Endres TK, Beck-Broichsitter M, Samsonova O, Renette T, Kissel TH. Self-assembled biodegradable amphiphilic PEG-PCL-lPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. Biomaterials 2011;32:7721-7731.
  5. Merkel OM, Zheng M, Mintzer MA, Pavan GM, Librizzi D, Maly M, Hoffken H, et al.. Molecular modeling and in vivo imaging can identify successful flexible triazine dendrimer-based siRNA delivery systems. J Control Release 2011;153:23-33.
  6. Merkel, O.M.; Mintzer, M.A.; Librizzi, D.; Samsonova, O.; Dicke, T.; Sproat, B.; Garn, H.; Barth, P.J.; Simanek, E.E.; Kissel, T. Triazine Dendrimers as Nonviral Vectors for in vitro and in vivo RNAi: The Effects of Peripheral Groups and Core Structure on Biological Activity. Mol. Pharm. 2010, 7, 969-983.
  7. Hosseini Nejad, E.; Castignolles, P.; Gilbert, R.G.; Guillaneuf, Y. Synthesis of Methacrylate Derivatives Oligomers by Dithiobenzoate-RAFT-Mediated Polymerization. J. Polym. Sci. A Polym. Chem. 2008, 46, 2277-2289.
  8. Santini CMB, Johnson MA, Boedicker JQ, Hatton TA, Hammond PT. Synthesis and bulk assembly behavior of linear-dendritic rod diblock copolymers. J. Polym. Sci., Part A: Polym. Chem. 2004;42:2784- 2814.
  9. Molecular Operating Environment (MOE), 2010.10; Chemical Computing Group Inc., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2010.
  10. Prevette LE, Lynch ML, Reineke TM. Amide Spacing Influences pDNA Binding of Poly(amidoamine)s. Biomacromolecules 2010;11:326-332.
  11. Nguyen, J.; Reul, R.; Roesler, S.; Dayyoub, E.; Schmehl, T.; Gessler, T.; Seeger, W.; Kissel, T. Amine- Modified Poly(Vinyl Alcohol)s as Non-viral Vectors for siRNA Delivery: Effects of the Degree of Amine Substitution on Physicochemical Properties and Knockdown Efficiency. Pharma. Res. 2010, 27, 2670- 2682.
  12. Keszler B, Kennedy JP, Mackey PW. Amphiphilic networks. VI. Swelling and sustained release of poly(N,N-dimethylacrylamide)-l-polyisobutylene, poly(N-N-dimethylamino ethylmethacrylate)-l- polyisobutylene and poly(2-hydroxyethyl methacrylate)-l-polyisobutylene networks. J. Controlled Release 1993;25:115-121.
  13. Liu, Y.; Nguyen, J.; Steele, T.; Merkel, O.; Kissel, T. A New Synthesis Method and Degradation of Hyper-Branched Polyethylenimine Grafted Polycaprolactone Block Mono-Methoxyl Poly (ethylene glycol) Copolymers (hy-PEI-g-PCL-block-mPEG) as Potential DNA Delivery Vectors. Polymer 2009, 50, 3895-3904.
  14. Arigita, C.; Zuidam, N.J.; Crommelin, D.J.; Hennink, W.E. Association and Dissociation Characteristics of Polymer/DNA Complexes Used for Gene Delivery. Pharm. Res. 1999, 16, 1534-1541.
  15. Patton, D.L.; Advincula, R.C. A Versatile Synthetic Route to Macromonomers via RAFT Polymerization. Macromolecules 2006, 39, 8674-8683.
  16. Mabilleau, G.; Moreau, M.F.; Filmon, R.; Basle, M.F.; Chappard, D. Biodegradability of Poly(2- hydroxyethyl methacrylate) in the Presence of the J774.2 Macrophage Cell Line. Biomaterials 2004, 25, 5155-5162.
  17. Liu Y, Samsonova O, Sproat B, Merkel O, Kissel T. Biophysical characterization of hyper-branched polyethylenimine-graft-polycaprolactone-block-mono-methoxyl-poly(ethylene glycol) copolymers (hy- PEI-PCL-mPEG) for siRNA delivery. J. Controlled Release 2011;153:262-268.
  18. Choosakoonkriang S, Lobo BA, Koe GS, Koe JG, Middaugh CR. Biophysical characterization of PEI/DNA complexes. J. Pharm. Sci. 2003;92:1710-1722.
  19. Neu, M.; Germershaus, O.; Behe, M.; Kissel, T. Bioreversibly Crosslinked Polyplexes of PEI and High Molecular Weight PEG Show Extended Circulation Times in vivo. J. Control. Release 2007, 124, 69-80. [7] van de Wetering, P.; Zuidam, N.J.; van Steenbergen, M.J.; van der Houwen, O.A.G.J.; Underberg, W.J.M.; Hennink, W.E. A Mechanistic Study of the Hydrolytic Stability of Poly(2-(dimethylamino)ethyl methacrylate). Macromolecules 1998, 31, 8063-8068.
  20. Montheard, J.-P.; Chatzopoulos, M.; Chappard, D. 2-Hydroxyethyl Methacrylate (HEMA): Chemical Properties and Applications in Biomedical Fields. Polym. Rev. 1992, 32, 1-34.
  21. Liu, L.; Wu, C.; Zhang, J.; Zhang, M.; Liu, Y.; Wang, X.; Fu, G. Controlled Polymerization of 2- (diethylamino)ethyl Methacrylate and Its Block Copolymer with N-Isopropylacrylamide by RAFT Polymerization. J. Polym. Sci. A Polym. Chem. 2008, 46, 3294-3305.
  22. Tagami, T.; Nakamura, K.; Shimizu, T.; Yamazaki, N.; Ishida, T.; Kiwada, H. CpG Motifs in pDNA- Sequences Increase anti-PEG IgM Production Induced by PEG-Coated pDNA-Lipoplexes. J. Control. Release 2010, 142, 160-166.
  23. Jiang, X.; Lok, M.C.; Hennink, W.E. Degradable-Brushed pHEMA-pDMAEMA Synthesized via ATRP and Click Chemistry for Gene Delivery. Bioconjugate Chem. 2007, 18, 2077-2084.
  24. Cherng, J.Y.; van de Wetering, P.; Talsma, H.; Crommelin, D.J.; Hennink, W.E. Effect of Size and Serum Proteins on Transfection Efficiency of Poly ((2-dimethylamino)ethyl methacrylate)-Plasmid Nanoparticles. Pharm. Res. 1996, 13, 1038-1042.
  25. Nandy B, Maiti PK. DNA compaction by a dendrimer. J. Phys. Chem. B 2011;115:217-230.
  26. van de Wetering, P.; Cherng, J.Y.; Talsma, H.; Crommelin, D.J.A.; Hennink, W.E. 2- (dimethylamino)ethyl Methacrylate Based (co)polymers as Gene Transfer Agents. J. Control. Release 1998, 53, 145-153.
  27. Rungsardthong, U.; Ehtezazi, T.; Bailey, L.; Armes, S.P.; Garnett, M.C.; Stolnik, S. Effect of Polymer Ionization on the Interaction with DNA in Nonviral Gene Delivery Systems. Biomacromolecules 2003, 4, 683-690.
  28. Full-time pharmacist at Stadtapotheke Treysa, Marktplatz 11, 34613
  29. Germershaus, O.; Mao, S.; Sitterberg, J.; Bakowsky, U.; Kissel, T. Gene Delivery Using Chitosan, Trimethyl Chitosan or Polyethylenglycol-graft-Trimethyl Chitosan Block Copolymers: Establishment of Structure-Activity Relationships in vitro. J. Control. Release 2008, 125, 145-154.
  30. Collet O. How does the first water shell fold proteins so fast? J. Chem. Phys. 2011;134:85101-85107.
  31. Mao, S.; Neu, M.; Germershaus, O.; Merkel, O.; Sitterberg, J.; Bakowsky, U.; Kissel, T. Influence of Polyethylene Glycol Chain Length on the Physicochemical and Biological Properties of Poly(ethylene imine)-graft-Poly(ethylene glycol) Block Copolymer/SiRNA Polyplexes. Bioconjugate Chem. 2006, 17, 1209-1218.
  32. Wink, T.; de Beer, J.; Hennink, W.E.; Bult, A.; van Bennekom, W.P. Interaction between Plasmid DNA and Cationic Polymers Studied by Surface Plasmon Resonance Spectrometry. Anal. Chem. 1999, 71, 801- 805.
  33. Verbaan, F.; van Dam, I.; Takakura, Y.; Hashida, M.; Hennink, W.; Storm, G.; Oussoren, C. Intravenous Fate of Poly(2-(dimethylamino)ethyl methacrylate)-Based Polyplexes. Eur. J. Pharm. Sci. 2003, 20, 419- 427.
  34. Lobo BA, Davis A, Koe G, Smith JG, Middaugh CR. Isothermal Titration Calorimetric Analysis of the Interaction between Cationic Lipids and Plasmid DNA. Arch. Biochem. Biophys. 2001;386:95-105.
  35. PhD candidate in the working group of Prof. Dr. Thomas Kissel, Department of Pharmaceutics & Biopharmacy, Philipps-Universitaet Marburg, Ketzerbach 63, 35032 Marburg, Germany Area of research: non-viral gene and drug delivery Teaching activity: practical training in Pharmaceutical Technology: preparation of sterile dosage forms (7 th semester pharmacy students)
  36. Samsonova O, Pfeiffer C, Hellmund M, Merkel OM, Kissel T. Low molecular weight pDMAEMA-block- pHEMA block-copolymers synthesized via RAFT-polymerization: potential non-viral gene delivery agents? Polymers (Basel, Switz.) 2011;3:693-718.
  37. Kunath, K.; von Harpe, A.; Fischer, D.; Petersen, H.; Bickel, U.; Voigt, K.; Kissel, T. Low-Molecular- Weight Polyethylenimine as a non-Viral Vector for DNA Delivery: Comparison of Physicochemical Properties, Transfection Efficiency and in vivo Distribution with High-Molecular-Weight Polyethylenimine. J. Control. Release 2003, 89, 113-125.
  38. Kataoka K, Ito H, Amano H, Nagasaki Y, Kato M, Tsuruta T, Suzuki K, et al.. Minimized platelet interaction with poly(2-hydroxyethyl methacrylate-block-4-bis(trimethylsilyl)methylstyrene) hydrogel showing anomalously high free water content. J. Biomater. Sci., Polym. Ed. 1998;9:111-129.
  39. Jensen LB, Mortensen K, Pavan GM, Kasimova MR, Jensen DK, Gadzhyeva V, Nielsen HM, et al.. Molecular characterization of the interaction between siRNA and PAMAM G7 dendrimers by SAXS, ITC, and molecular dynamics simulations. Biomacromolecules 2010;11:3571-3577.
  40. Sun C, Tang T, Uludag H, Cuervo JE. Molecular Dynamics Simulations of DNA/PEI Complexes: Effect of PEI Branching and Protonation State. Biophys. J. 2011;100:2754-2763.
  41. You, J.O.; Auguste, D.T. Nanocarrier Cross-Linking Density and pH Sensitivity Regulate Intracellular Gene Transfer. Nano Lett. 2009, 9, 4467-4473.
  42. Bouchemal K. New challenges for pharmaceutical formulations and drug delivery systems characterization using isothermal titration calorimetry. Drug Discov Today 2008;13:960-972.
  43. Weyts KF, Goethals EJ. New synthesis of linear poly(ethylenimine). Polym. Bull. (Berlin) 1988;19:13-19. LIST OF PUBLICATIONS 2012 Han Chang Kang 1 , Olga Samsonova 1 , Sun-Woong Kang, You Han Bae 1 contributed equally The effect of environmental pH on polymeric transfection efficiency research article accepted in Biomaterials 33 (2012) 1651-1662
  44. Kaneda Y, Tabata Y. Non-viral vectors for cancer therapy. Cancer Sci. 2006;97:348-354.
  45. Mintzer, M.A.; Simanek, E.E. Nonviral Vectors for Gene Delivery. Chem. Rev. 2009, 109, 259-302. [3] Neu, M.; Fischer, D.; Kissel, T. Recent Advances in Rational Gene Transfer Vector Design Based on Poly(ethylene imine) and Its Derivatives. J. Gene Med. 2005, 7, 992-1009.
  46. Olga Samsonova 1 , Christian Pfeiffer 1 , Markus Hellmund, Olivia Merkel and Thomas Kissel 1 contributed equally Low Molecular Weight pDMAEMA-block-pHEMA Block-Copolymers Synthesized via RAFT-Polymerization: Potential Non-Viral Gene Delivery Agents? research article published in Polymers 3 (2011) 693-718
  47. Jones, R.A.; Poniris, M.H.; Wilson, M.R. pDMAEMA is internalised by endocytosis but does not physically disrupt endosomes. J. Control. Release 2004, 96, 379-391. [9] Layman, J.M.; Ramirez, S.M.; Green, M.D.; Long, T.E. Influence of Polycation Molecular Weight on Poly(2-dimethylaminoethyl methacrylate)-Mediated DNA Delivery in vitro. Biomacromolecules 2009, 10, 1244-1252.
  48. Schallon A, Jerome V, Walther A, Synatschke CV, Mueller AHE, Freitag R. Performance of three PDMAEMA-based polycation architectures as gene delivery agents in comparison to linear and branched PEI. React. Funct. Polym. 2010;70:1-10.
  49. Kichler A, Leborgne C, Coeytaux E, Danos O. Polyethylenimine-mediated gene delivery: a mechanistic study. J Gene Med 2001;3:135-144.
  50. Kang HC, Lee M, Bae YH. Polymeric gene carriers. Crit. Rev. Eukaryotic Gene Expression 2005;15:317- 342.
  51. Wiseman T, Williston S, Brandts JF, Lin LN. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 1989;179:131-137.
  52. Dai, F.; Sun, P.; Liu, Y.; Liu, W. Redox-Cleavable Star Cationic PDMAEMA by arm-First Approach of ATRP as a Nonviral Vector for Gene Delivery. Biomaterials 2010, 31, 559-569.
  53. van de Wetering, P.; Cherng, J.-Y.; Talsma, H.; Hennink, W.E. Relation between Transfection Efficiency and Cytotoxicity of Poly(2-(dimethylamino)ethyl methacrylate)/Plasmid Complexes. J. Control. Release 1997, 49, 59-69.
  54. Olivia M. Merkel, Meredith A. Mintzer, Damiano Librizzi, Olga Samsonova, Tanja Dicke, Brian Sproat, Holger Garn, Peter J. Barth,O Eric E. Simanek and Thomas Kissel Triazine Dendrimers as Nonviral Vectors for in Vitro and in Vivo RNAi: The Effects of Peripheral Groups and Core Structure on Biological Activity research article published in Molecular Pharmaceutics 7 (2010) 969–983
  55. Connolly ML. Solvent-accessible surfaces of proteins and nucleic acids. Science (Washington, D. C., 1883-) 1983; 221:709-713.
  56. Verbaan, F.J.; Oussoren, C.; Snel, C.J.; Crommelin, D.J.; Hennink, W.E.; Storm, G. Steric Stabilization of Poly(2-(dimethylamino)ethyl methacrylate)-Based Polyplexes Mediates Prolonged Circulation and Tumor Targeting in Mice. J. Gene Med. 2004, 6, 64-75.
  57. Chen, L.; Li, H.; Zhao, R.; Zhu, J. Study Progress of Cell Endocytosis. Chin.-Ger. J. Clin. Oncol. 2009, 8, 360-365.
  58. Xiong, Q.; Ni, P.; Zhang, F.; Yu, Z. Synthesis and Characterization of 2-(Dimethylamino)ethyl Methacrylate Homopolymers via aqueous RAFT Polymerization and Their Application in Miniemulsion Polymerization. Polym. Bull. 2004, 53, 1-8.
  59. Sahnoun, M.; Charreyre, M.-T.; Veron, L.; Delair, T.; D'Agosto, F. Synthetic and Characterization Aspects of Dimethylaminoethyl Methacrylate Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization. J. Polym. Sci. A Polym. Chem. 2005, 43, 3551-3565.
  60. Alatorre-Meda M, Taboada P, Hartl F, Wagner T, Freis M, Rodriguez JR. The influence of chitosan valence on the complexation and transfection of DNA: The weaker the DNA-chitosan binding the higher the transfection efficiency. Colloids Surf., B 2011;82:54-62.
  61. Tsui V, Case DA. Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers 2001;56:275-291.
  62. The PyMOL Molecular Graphics System, Version 1.2r2pre, Schrödinger, LLC.
  63. Kim W, Yamasaki Y, Jang W, Kataoka K. Thermodynamics of DNA Condensation Induced by Poly(ethylene glycol)-block-polylysine through Polyion Complex Micelle Formation. Biomacromolecules 2010, 11: 1180-1186
  64. Yu Liu 1 , Olga Samsonova 1 , Brian Sproat, Olivia Merkel, Thomas Kissel 1 contributed equally Biophysical characterization of hyper-branched polyethylenimine-graft- polycaprolactone-block-mono-methoxyl-poly(ethylene glycol) copolymers (hy-PEI- PCL-mPEG) for siRNA delivery research article published in Journal of Controlled Release 153 (2011) 262-268
  65. Thomas Endres, Moritz Beck-Broichsitter, Olga Samsonova, Thomas Renette, Thomas Kissel Controlling the self-assembly structure of mPEG-PCL-lPEI triblock copolymers for drug and gene delivery: from micells to nanoparticles research article published in Biomaterials 32 (2011) 7721-7731
  66. Work experience since Aug 2009
  67. Morille, M.; Passirani, C.; Vonarbourg, A.; Clavreul, A.; Benoit, J.P. Progress in Developing Cationic Vectors for Non-Viral Systemic Gene Therapy against Cancer. Biomaterials 2008, 29, 3477-3496. [2]
  68. Henriksen JR, Andresen TL. Thermodynamic Profiling of Peptide Membrane Interactions by Isothermal Titration Calorimetry: A Search for Pores and Micelles. Biophys. J. 2011;101:100-109.
  69. Prokop, A.; Davidson, J.M. Nanovehicular Intracellular Delivery Systems. J. Pharm. Sci. 2008, 97, 3518- 3590.
  70. Merkel, O.M.; Beyerle, A.; Beckmann, B.M.; Zheng, M.; Hartmann, R.K.; Stoger, T.; Kissel, T.H. Polymer-Related Off-Target Effects in Non-Viral siRNA Delivery. Biomaterials 2011, 32, 2388-2398.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten