Publikationsserver der Universitätsbibliothek Marburg

Titel:Strukturbasiertes Wirkstoffdesign am Beispiel der Zielproteine HIV-1 Protease, Transglutaminase 2 und Faktor XIII
Autor:Lindemann, Ina
Weitere Beteiligte: Klebe, Gerhard (Prof. Dr.)
Veröffentlicht:2011
URI:https://archiv.ub.uni-marburg.de/diss/z2012/0024
DOI: https://doi.org/10.17192/z2012.0024
URN: urn:nbn:de:hebis:04-z2012-00244
DDC:610 Medizin
Titel (trans.):Structure-based drug design using the example of three target proteins: HIV-1 Protease, Transglutaminase 2 and Factor XIII
Publikationsdatum:2012-06-19
Lizenz:https://rightsstatements.org/vocab/InC-NC/1.0/

Dokument

Schlagwörter:
HIV, drug design, Transglutaminase, HIV-Proteaseinhibitor, Factor XIII, HIV protease, Arzneimitteldesign, Proteinglutamin-Glutamyltransferase <Proteinglutamin-gamma-glutamyltransferase>

Zusammenfassung:
In dieser Arbeit wird das strukturbasierte Design von Wirkstoffen am Beispiel drei ver-schiedener Zielproteine beschrieben: Der HIV-1 Protease und der humanen Proteine Transglutaminase 2 und Blutgerinnungsfaktor XIII. Ziel der Arbeit war, die jeweiligen Proteine im Komplex mit ihren Inhibitoren zu kristallisieren und die dreidimensionale Struktur der Komplexe mittels Röntgenstrukturanalyse zu bestimmen. Die erhaltenen Informationen über den Bindungsmodus der Inhibitoren sollten für das Design neuer Moleküle und die Optimierung der Bindungseigenschaften, zum Beispiel der Affinität zum Protein, genutzt werden, um somit einen Beitrag zur Entwicklung neuer Arznei-stoffe zu leisten. Inhibitoren der HIV-1 Protease sind potentielle Arzneistoffe zur Therapie von HIV-infizierten Menschen. Sie können helfen, die Zeit bis zum Ausbruch der Immunschwä-che-Krankheit AIDS zu verlängern sowie deren Symptomatik zu lindern. Auch wenn bereits einige Arzneistoffe zur Behandlung zur Verfügung stehen, erfordert die zuneh-mende Resistenzbildung der Viren und die Entwicklung von AIDS zu einer weltweiten Pandemie eine kontinuierliche Weiterentwicklung der Therapie. Die humane Transglu-taminase 2 ist unter anderem an der Pathogenese der Zöliakie beteiligt, zu deren Thera-pie zur Zeit keine Arzneimittel zur Verfügung stehen. Ein Medikament mit einem Inhi-bitor der Transglutaminase 2 könnte Patienten, die von dieser Gluten-Unverträglichkeit betroffen sind, ermöglichen, ihre strikte Diät aufzulockern, und somit ihre Lebensquali-tät beträchtlich erhöhen. Auch der Faktor XIII gehört zu der Familie der Transglutami-nasen. Durch seine Funktion in der Blutgerinnung stellt er einen Angriffspunkt für eine antikoagulative Therapie dar. Inhibitoren des Proteins sind daher potentielle Arzneistof-fe und eine neue Option zur Prophylaxe und Behandlung verschiedenster Herz-Kreislauf-Erkrankungen, wie zum Beispiel von Thrombosen und Embolien. In Abschnitt 2.3 dieser Arbeit werden Kristallstrukturen von Komplexen der HIV-1 Protease mit verschiedenen Inhibitoren vorgestellt, die als Grundstruktur ein sekundäres Amin besitzen. Zunächst wird in Abschnitt 2.3.1. gezeigt, wie innerhalb einer Serie strukturell sehr ähnlicher Inhibitoren grundlegend verschiedene Bindungsmodi zum Protein beobachtet werden konnten, die in Zusammenhang mit der Kristallform und der Raumgruppe des Kristalls stehen. Dass der gleiche Inhibitor in Kristallen mit unter-schiedlicher Raumgruppe sowohl C2-symmetrisch als auch asymmetrisch an die HIV-1 Protease binden kann, wird in Abschnitt 2.3.2 beschrieben. Der Zusammenhang zwi-schen Bindungsmodus des Inhibitors, Symmetrie und Raumgruppe wird dort noch ein-mal ausführlich diskutiert. In Abschnitt 2.3.3 und 2.3.4 wird beschrieben, wie Moleküle mit Fulleren- und Piperidin-Grundgerüst durch enzymkinetische Messungen als neue Inhibitoren der HIV-1 Protease charakterisiert werden konnten. Strukturelle Informatio-nen über den Bindungsmodus dieser Inhibitoren konnten jedoch nicht erhalten werden. Jedoch konnte der Bindungsmodus einer Serie dreiarmiger, nicht symmetrischer Pyrro-lidinderivate durch Co-Kristallisation und Röntgenstrukturanalyse bestimmt werden, wie in Abschnitt 2.3.5 gezeigt wird. Eine Weiterentwicklung der Amin-basierten Inhibi-toren stellen die bizyklischen Pyrrolidinderivate dar, deren Bindungseigenschaften in Abschnitt 2.3.6 vorgestellt werden. Kristallstrukturen von Komplexen mit diesen Inhibi-toren stellten auch die Grundlage für ein Fragment-basiertes Design dar, welches in Abschnitt 2.3.7 beschrieben wird. Die Transglutaminase 2 wurde, wie in Abschnitt 3.3 beschrieben, im Komplex mit ko-valent bindenden Inhibitoren in der offenen Konformation des Proteins kristallisiert. Die Kristallisierbarkeit dieser Komplexe erwies sich als stark abhängig vom verwendeten Inhibitor. Es gelang jedoch schließlich, Kristallstrukturen von drei verschiedenen Kom-plexen zu bestimmen. Die Strukturaufklärung vermittelte wertvolle Informationen über über den Bindungsmodus der Inhibitoren, die von dem Kooperationspartner in diesem Projekt, der ZEDIRA GmbH, als Grundlage für das Design weiterer Moleküle auf dem Weg zu einem geeigneten Arzneistoff genutzt werden konnten. Vergleichbar zu den Arbeiten mit der Transglutaminase 2, sollte auch der Faktor XIIIa im Komplex mit einem kovalent bindenden Inhibitor kristallisiert und anschließend erstmals die dreidimensionale Struktur des Proteins in einer offenen Konformation be-stimmt werden. Wie in Abschnitt 4.3 beschrieben, konnte das Protein zunächst erfolg-reich in der geschlossenen Konformation kristallisiert werden. Anschließend wurden zahlreiche Komplexe des Faktor XIIIa mit kovalent gebundenen Inhibitoren in umfang-reichen Screenings eingesetzt, um Kristallisationsbedingungen für das inhibierte Protein zu finden. Am Ende dieser Arbeit konnten erste Kristalle eines Komplexes erhalten und auf ihr Diffraktionsvermögen getestet werden, so dass ein großer Schritt auf dem Weg zur Kristallstruktur getan wurde.

Bibliographie / References

  1. Specker, E., De novo-Design und Synthese neuer Leitstrukturen als Übergangs- zustandsmimetika zur selektiven Inhibition der HIV-1 Protease und Cathepsin D. 2004: Marburg.
  2. Jones, G., Willett, P., Glen, R. C., Leach, A. R., and R. Taylor, Development and validation of a genetic algorithm for flexible docking. J Mol Biol, 1997. 267(3): p. 727-48.
  3. Seidler, J., McGovern, S. L., Doman, T. N., and B. K. Shoichet, Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem, 2003. 46(21): p. 4477-86.
  4. Dunitz, J.D. and R. Taylor, Organic fluorine hardly ever accepts hydrogen bonds. Chem. Eur. J., 1997. 3(1): p. 89-98.
  5. Powers, J.C., Asgian, J. L., Ekici, O. D., and K. E. James, Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev, 2002. 102(12): p. 4639- 750.
  6. Castro, H.C., Abreu, P. A., Geraldo, R. B., Martins, R. C., dos Santos, R., Loureiro, N. I., Cabral, L. M., and C. R. Rodrigues, Looking at the proteases from a simple perspective. J Mol Recognit, 2011. 24(2): p. 165-81.
  7. Mousa, S.A., Novel anticoagulant therapy: principle and practice. Methods Mol Biol, 2010. 663: p. 157-79.
  8. de Kloe, G.E., Bailey, D., Leurs, R., and I. J. de Esch, Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today, 2009. 14(13-14): p. 630-46.
  9. Altschul, S.F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and D. J. Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.
  10. Kantardjieff, K.A. and B. Rupp, Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid com- plex crystals. Protein Sci, 2003. 12(9): p. 1865-71.
  11. Perryman, A.L., Zhang, Q., Soutter, H. H., Rosenfeld, R., McRee, D. E., Olson, A. J., Elder, J. E., and C. D. Stout, Fragment-based screen against HIV prote- ase. Chem Biol Drug Des, 2010. 75(3): p. 257-68.
  12. Griffin, M., Mongeot, A., Collighan, R., Saint, R. E., Jones, R. A., Coutts, I. G., and D. L. Rathbone, Synthesis of potent water-soluble tissue transglutaminase inhibitors. Bioorg Med Chem Lett, 2008. 18(20): p. 5559-62.
  13. Schlegel, B., Laggner, C., Meier, R., Langer, T., Schnell, D., Seifert, R., Stark, H., Holtje, H. D., and W. Sippl, Generation of a homology model of the human histamine H(3) receptor for ligand docking and pharmacophore-based screen- ing. J Comput Aided Mol Des, 2007. 21(8): p. 437-53. Publikationen 197
  14. Prabu-Jeyabalan, M., E. Nalivaika, and C.A. Schiffer, Substrate shape deter- mines specificity of recognition for HIV-1 protease: analysis of crystal struc- tures of six substrate complexes. Structure, 2002. 10(3): p. 369-81.
  15. Tozser, J., Bagossi, P., Weber, I. T., Louis, J. M., Copeland, T. D., and S. Oroszlan, Studies on the symmetry and sequence context dependence of the HIV- 1 proteinase specificity. J Biol Chem, 1997. 272(27): p. 16807-14.
  16. Muszbek, L., Bagoly, Z., Bereczky, Z., and E. Katona, The involvement of blood coagulation factor XIII in fibrinolysis and thrombosis. Cardiovasc Hematol Agents Med Chem, 2008. 6(3): p. 190-205.
  17. Penzes, K., Kover, K. E., Fazakas, F., Haramura, G., and L. Muszbek, Molecu- lar mechanism of the interaction between activated factor XIII and its glutamine donor peptide substrate. J Thromb Haemost, 2009. 7(4): p. 627-33.
  18. Fauci, A.S., 25 years of HIV. Nature, 2008. 453(7193): p. 289-90.
  19. Rappuoli, R. and A. Aderem, A 2020 vision for vaccines against HIV, tuberculo- sis and malaria. Nature, 2011. 473(7348): p. 463-9.
  20. Kohl, N.E., Rothrock, D. J., Leone, J. W., Bannow, C. A., Lull, J. M., Reardon, I. M., Sarcich, J. L., Howe, W. J., Tomich, C. S., and C. W. Smith, Active hu- man immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U S A, 1988. 85(13): p. 4686-90.
  21. Dr. Andreas Heine für die Unterstützung bei der Sammlung und Auswertung der rönt- genkristallographischen Daten und seine stete Hilfsbereitschaft.
  22. Cleary, D.B., Doiphode, P. G., Sabo, T. M., and M. C. Maurer, A non-reactive glutamine residue of alpha2-antiplasmin promotes interactions with the factor XIII active site region. J Thromb Haemost, 2009. 7(11): p. 1947-9.
  23. Schaertl, S., Prime, M., Wityak, J., Dominguez, C., Munoz-Sanjuan, I., Pacifici, R. E., Courtney, S., Scheel, A., and D. Macdonald, A profiling platform for the characterization of transglutaminase 2 (TG2) inhibitors. J Biomol Screen, 2010. 15(5): p. 478-87.
  24. Toth, M.V. and G.R. Marshall, A simple, continuous fluorometric assay for HIV protease. International Journal of Peptide & Protein Research, 1990. 36(6): p. 544-50.
  25. Klebe, A small non-rule of 3 compatible fragment library provides high hit rate of endothiapepsin crystal structures with various fragment chemotypes. J Med Chem, in press
  26. Aspartic acid proteases as therapeutic targets, ed. A.K. Ghosh. 2010, Wein- heim: Wiley-VCH Verlag.
  27. McGovern, S.L., Helfand, B. T., Feng, B., and B. K. Shoichet, A specific mecha- nism of nonspecific inhibition. J Med Chem, 2003. 46(20): p. 4265-72.
  28. Sicker, T. and R. Hilgenfeld, [Blood coagulation factor XIII: activation, sub- strates and structure of a transglutaminase]. Hamostaseologie, 2002. 22(1): p. 20-7.
  29. Muszbek, L., V.C. Yee, and Z. Hevessy, Blood coagulation factor XIII: struc- ture and function. Thromb Res, 1999. 94(5): p. 271-305.
  30. Rodrigo, L., Celiac disease. World J Gastroenterol, 2006. 12(41): p. 6585-93.
  31. Koning, F., Celiac disease: caught between a rock and a hard place. Gastroen- terology, 2005. 129(4): p. 1294-301.
  32. Ho, D.D., Toyoshima, T., Mo, H., Kempf, D., Norbeck, D., Chen, C., Wideburg, N. E., Burt, S. T., Erickson, J. W., and M. K. Singh, Characterization of Human Immunodefiency Virus Type 1 variants with increased resistance to a C2- symmetric protease inhibitor. J Virol, 1993. 68(3): p. 2016-2020.
  33. Choi, K., Siegel, M., Piper, J. L., Yuan, L., Cho, E., Strnad, P., Omary, B., Rich, K. M., and C. Khosla, Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem Biol, 2005. 12(4): p. 469-75.
  34. Christian Sohn für seine technische Unterstützung bei Arbeiten am Röntgendiffrakto- meter und seine Unverwechselbarkeit.
  35. Freire, Compensating enthalpic and entropic changes hinder binding affinity op- timization. Chem Biol Drug Des, 2007. 69(6): p. 413-22.
  36. Heaslet, H., Rosenfeld, R., Giffin, M., Lin, Y. C., Tam, K., Torbett, B. E., Elder, J. H., McRee, D. E., and C. D. Stout, Conformational flexibility in the flap do- mains of ligand-free HIV protease. Acta Crystallogr D Biol Crystallogr, 2007. 63(Pt 8): p. 866-75.
  37. Han, B.G., Cho, J. W., Cho, Y. D., Jeong, K. C., Kim, S. Y., and B. I. Lee, Crys- tal structure of human transglutaminase 2 in complex with adenosine triphos- phate. Int J Biol Macromol, 2010. 47(2): p. 190-5.
  38. Potthoff, A.V. and N.H. Brockmeyer, Current therapy of HIV. J Dtsch Dermatol Ges, 2009. 16. Hammer, S.M., Eron, J. J., Jr., Reiss, P., Schooley, R. T., Thompson, M. A., Walmsley, S., Cahn, P., Fischl, M. A., Gatell, J. M., Hirsch, M. S., Jacobsen, D. M., Montaner, J. S., Richman, D. D., Yeni, P. G., and P. A. Volberding, Anti- retroviral treatment of adult HIV infection: 2008 recommendations of the Inter- national AIDS Society-USA panel. JAMA, 2008. 300(5): p. 555-70.
  39. Otto, H.H. and T. Schirmeister, Cysteine Proteases and Their Inhibitors. Chem Rev, 1997. 97(1): p. 133-172.
  40. Sheriff, S. and W.A. Hendrickson, Description of overall anisotropy in diffrac- tion from macromolecular crystals. Acta Crystallogr A, 1987. 43: p. 118-121.
  41. Marcorin, G.L., Da Ros, T., Castellano, S., Stefancich, G., Bonin, I., Miertus, S., and M. Prato, Design and synthesis of novel [60]fullerene derivatives as poten- tial HIV aspartic protease inhibitors. Org Lett, 2000. 2(25): p. 3955-8. 91. Benyamini, H., Shulman-Peleg, A., Wolfson, H. J., Belgorodsky, B., Fadeev, L., and M. Gozin, Interaction of c(60)-fullerene and carboxyfullerene with proteins: docking and binding site alignment. Bioconjug Chem, 2006. 17(2): p. 378-86. 92. Andersson, T., Sundahl, M., Westman, G., and O. Wennerström, Host-guest chemistry of fullerenes: A water-soluble complex between C70 and gamma- cyclodextrin. Tetrahedron Letters, 1994. 35(38): p. 7103-7106.
  42. Hausch, F., Halttunen, T., Maki, M., and C. Khosla, Design, synthesis, and evaluation of gluten peptide analogs as selective inhibitors of human tissue transglutaminase. Chem Biol, 2003. 10(3): p. 225-31.
  43. Sousa, S.F., Tamames, B., Fernandes, P. A., and M. J. Ramos, Detailed atom- istic analysis of the HIV-1 protease interface. J Phys Chem B, 2011. 115(21): p. 7045-57.
  44. Huth, J.R., Park, C., Petros, A. M., Kunzer, A. R., Wendt, M. D., Wang, X., Lynch, C. L., Mack, J. C., Swift, K. M., Judge, R. A., Chen, J., Richardson, P. L., Jin, S., Tahir, S. K., Matayoshi, E. D., Dorwin, S. A., Ladror, U. S., Severin, J. M., Walter, K. A., Bartley, D. M., Fesik, S. W., Elmore, S. W., and P. J. Ha- jduk, Discovery and design of novel HSP90 inhibitors using multiple fragment- based design strategies. Chem Biol Drug Des, 2007. 70(1): p. 1-12.
  45. Cleland, W.W., Dithiothreitol, a new protective reagent for SH groups. Bio- chemistry, 1963: p. 480-482.
  46. Bostrom, J., A. Hogner, and S. Schmitt, Do structurally similar ligands bind in a similar fashion? J Med Chem, 2006. 49(23): p. 6716-25.
  47. Karthik, S. and S. Senapati, Dynamic flaps in HIV-1 protease adopt unique or- dering at different stages in the catalytic cycle. Proteins, 2011. 79(6): p. 1830- 40.
  48. Borman, S., Enzyme opens for business. C&En News, 2008. 86(1): p. 24.
  49. Ichinose, A., Extracellular Transglutaminase: Factor XIII, in Transglutami- nases, K. Mehta and R. Eckert, Editors. 2005: Basel. p. 192-208.
  50. Komaromi, I., Z. Bagoly, and L. Muszbek, Factor XIII: novel structural and functional aspects. J Thromb Haemost, 2010. 9(1): p. 9-20.
  51. Wensing, A.M., N.M. van Maarseveen, and M. Nijhuis, Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance. Antiviral Res, 2009. 85(1): p. 59-74.
  52. Lewin, S.R., Evans, V. A., Elliott, J. H., Spire, B., and N. Chomont, Finding a cure for HIV: will it ever be achievable? J Int AIDS Soc, 2011. 14: p. 4. 19.
  53. Erlanson, D.A., R.S. McDowell, and T. O'Brien, Fragment-based drug discov- ery. J Med Chem, 2004. 47(14): p. 3463-82.
  54. Erlanson, D.A., Fragment-based lead discovery: a chemical update. Curr Opin Biotechnol, 2006. 17(6): p. 643-52.
  55. Für die Unterstützung während meiner Promotionszeit möchte ich einigen Menschen Danke sagen:
  56. Bosi, S., Da Ros, T., Spalluto, G., and M. Prato, Fullerene derivatives: an at- tractive tool for biological applications. Eur J Med Chem, 2003. 38(11-12): p. 913-23.
  57. Meinem Doktorvater Prof. Dr. Gerhard Klebe für die Möglichkeit, meine Dissertation in seiner Arbeitsgruppe anfertigen zu dürfen und insbesondere für die Freiheit in der Gestaltung der Arbeit. Wenn ich dann doch mal allein nicht weiter wusste, hatte er stets ein offenes Ohr und gute Ideen.
  58. Leatherbarrow, R.J., GraFit Version 4.0. 1998, Staines, U. K.: Erithacus Soft- ware Ltd.
  59. Helene dafür, dass sie die beste Bürokollegin war, die ich mir vorstellen kann.
  60. Piper, J.L., G.M. Gray, and C. Khosla, High selectivity of human tissue transglu- taminase for immunoactive gliadin peptides: implications for celiac sprue. Bio- chemistry, 2002. 41(1): p. 386-93.
  61. Brik, A. and C.H. Wong, HIV-1 protease: mechanism and drug discovery. Org Biomol Chem, 2003. 1(1): p. 5-14.
  62. Sarkar, I., Hauber, I., Hauber, J., and F. Buchholz, HIV-1 proviral DNA excision using an evolved recombinase. Science, 2007. 316(5833): p. 1912-5. Literaturverzeichnis 188 20. Barouch, D.H., Challenges in the development of an HIV-1 vaccine. Nature, 2008. 455(7213): p. 613-9.
  63. Coffin, J.M., HIV population dynamics in vivo: implications for genetic varia- tion, pathogenesis, and therapy. Science, 1995. 267(5197): p. 483-9.
  64. McKinnon, L.R. and C.M. Card, HIV vaccine efficacy trials: A brief history, and options for going forward. AIDS Rev, 2010. 12(4): p. 209-17.
  65. Prabu-Jeyabalan, M., E. Nalivaika, and C.A. Schiffer, How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 prote- ase. J Mol Biol, 2000. 301(5): p. 1207-20.
  66. Dieterich, W., Ehnis, T., Bauer, M., Donner, P., Volta, U., Riecken, E. O., and D. Schuppan, Identification of tissue transglutaminase as the autoantigen of ce- liac disease. Nat Med, 1997. 3(7): p. 797-801.
  67. Friedman, S.H., DeCamp, D. L., Sijbesma, R. P., Srdanov, G., Wudl, F., and G. L. Kenyon, Inhibition of the HIV-1 protease by Fullerene derivatives: Model building studies and experimental verification. J. Am. Chem. Soc., 1993. 115: p. 6506-6509.
  68. Prasa, D. and J. Sturzebecher, [Inhibitors of factor XIIIa]. Hamostaseologie, 2002. 22(1): p. 43-7.
  69. Wlodawer, A. and J. Vondrasek, Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct, 1998. 27: p. 249-84.
  70. Heine, and G. Klebe, Inhibitors of transglutaminase 2: A therapeutic option in celiac disease, in International symposium on medicinal chemistry EFMC-ISMC. 2008: Vi- enna, Austria Lindemann, I., J. Böttcher, K. Oertel, J. Weber, M. Hils, R. Pasternack, U.Linne, A.
  71. Durdagi, S., Supuran, C. T., Strom, T. A., Doostdar, N., Kumar, M. K., Barron, A. R., Mavromoustakos, T., and M. G. Papadopoulos, In silico drug screening approach for the design of magic bullets: a successful example with anti-HIV fullerene derivatized amino acids. J Chem Inf Model, 2009. 49(5): p. 1139-43. 90.
  72. Barre-Sinoussi, F., Chermann, J.C., Rey, F., Nugeyre, M.T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C., Rozenbaum, W., and L.Montagnier, Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Sci- ence, 1983. 220(4599): p. 868-71.
  73. Jark dafür, dass er sich viel Zeit genommen hat, mich einzuarbeiten, und auch später immer noch für Fragen zur Verfügung stand.
  74. Dr. Kai Oertel für die Synthese der Inhibitoren der Transglutaminase 2 und, auch bei Dr. Sabine Urig, für die gute Zusammenarbeit.
  75. Mariani, P., Carsughi, F., Spinozzi, F., Romanzetti, S., Meier, G., Casadio, R., and C. M. Bergamini, Ligand-induced conformational changes in tissue trans- glutaminase: Monte Carlo analysis of small-angle scattering data. Biophys J, 2000. 78(6): p. 3240-51.
  76. Lydia Hartleben und Angela Scholz für ihre umfassende Hilfe in organisatorischen An- gelegenheiten.
  77. Mehta, K., Mammalian Transglutaminases: A family portrait, in Transglutami- nases, K. Mehta and R. Eckert, Editors. 2005: Basel. p. 1-18.
  78. Luque, I., Todd, M. J., Gomez, J., Semo, N., and E. Freire, Molecular basis of resistance to HIV-1 protease inhibition: a plausible hypothesis. Biochemistry, 1998. 37(17): p. 5791-7.
  79. Lindvall, M.K., Molecular modeling in cysteine protease inhibitor design. Curr Pharm Des, 2002. 8(18): p. 1673-81.
  80. Klee, N., Linde, K., Lindemann, I., Klebe, G., and W. E. Diederich, New inhibi- tors for an old target: Piperidines and pyrrolidines to block HIV-1 protease, in Frontiers in Medicinal Chemistry 2010. 2010: Münster, Germany.
  81. Hughes, A., T. Barber, and M. Nelson, New treatment options for HIV salvage patients: an overview of second generation PIs, NNRTIs, integrase inhibitors and CCR5 antagonists. J Infect, 2008. 57(1): p. 1-10.
  82. Krohn, A., Redshaw, S., Ritchie, J. C., Graves, B. J., and M. H. Hatada, Novel binding mode of highly potent HIV-proteinase inhibitors incorporating the (R)- hydroxyethylamine isostere. J Med Chem, 1991. 34(11): p. 3340-2. Literaturverzeichnis 189
  83. Schechter, I. and A. Berger, On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun, 1967. 27(2): p. 157-62.
  84. Klimas, N., A.O. Koneru, and M.A. Fletcher, Overview of HIV. Psychosom Med, 2008. 70(5): p. 523-30.
  85. Freund, K.F., Doshi, K. P., Gaul, S. L., Claremon, D. A., Remy, D. C., Baldwin, J. J., Pitzenberger, S. M., and A. M. Stern, Transglutaminase inhibition by 2-[(2- oxopropyl)thio]imidazolium derivatives: mechanism of factor XIIIa inactivation. Biochemistry, 1994. 33(33): p. 10109-19.
  86. Adams, P.D., Afonine, P. V., Bunkoczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and P. H. Zwart, PHENIX: a comprehensive Python- based system for macromolecular structure solution. Acta Crystallographica Section D-Biological Crystallography, 2010. 66(Pt 2): p. 213-21.
  87. Guller, R., Binggeli, A., Breu, V., Bur, D., Fischli, W., Hirth, G., Jenny, C., Kansy, M., Montavon, F., Muller, M., Oefner, C., Stadler, H., Vieira, E., Wilhelm, M., Wostl, W., and H.P. Marki, Piperidine-renin inhibitors com- pounds with improved physicochemical properties. Bioorg Med Chem Lett, 1999. 9(10): p. 1403-8.
  88. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology, Macromolecular Crystallography, part A, ed. C.W.J. Carter and R.M. Sweet. Vol. 276. 1997, New York: Aca- demic Press.
  89. Laskowski, R.A., MacArthur, M. W., Moss, D. S., and J. M. Thornton, PROCHECK -a program to check the stereochemical quality of protein struc- tures. Journal of Applied Crystallography, 1993. 26: p. 283-291.
  90. Wlodawer, A., Minor, W., Dauter, Z., and M. Jaskolski, Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J, 2008. 275(1): p. 1-21.
  91. Reich, S.H., Melnick, M., Davies, J. F., 2nd, Appelt, K., Lewis, K. K., Fuhry, M. A., Pino, M., Trippe, A. J., Nguyen, D., and H. Dawson, Protein structure-based design of potent orally bioavailable, nonpeptide inhibitors of human immunode- ficiency virus protease. Proc Natl Acad Sci U S A, 1995. 92(8): p. 3298-302. 78. Sheldrick, G.M., A short history of SHELX. Acta Crystallogr A, 2008. 64(Pt 1): p. 112-22. 79. Koch, C., Heine. A., and G. Klebe, Radiation damage reveals promising inter- action position. J Synchrotron Radiation, 2011. 18(in press).
  92. Klee, N., Lindemann, I., Klebe, G., and W. E. Diederich, Pyrrolidine based bi- cycles: A promising new scaffold for HIV protease inhibitors, in 5th Summer School "Medicinal Chemistry". 2010: Regensburg, Germany. 99.
  93. McLachlan, A.D., Rapid comparison of protein structures. Acta Crystallogr A, 1982. 38: p. 871-873.
  94. Siegel, M., Bethune, M. T., Gass, J., Ehren, J., Xia, J., Johannsen, A., Stuge, T. B., Gray, G. M., Lee, P. P., and C. Khosla, Rational design of combination en- zyme therapy for celiac sprue. Chem Biol, 2006. 13(6): p. 649-58.
  95. Rose, J.R., R. Salto, and C.S. Craik, Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. J Biol Chem, 1993. 268(16): p. 11939-45.
  96. Cheng, Y. and W.H. Prusoff, Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochemical Pharmacology, 1973. 22: p. 3099-3108. 60.
  97. Wostl, Renin inhibition by substituted piperidines: a novel paradigm for the in- hibition of monomeric aspartic proteinases? Chem Biol, 1999. 6(3): p. 127-31. 49.
  98. Ahvazi, B., Boeshans, K. M., Idler, W., Baxa, U., and P. M. Steinert, Roles of calcium ions in the activation and activity of the transglutaminase 3 enzyme. J Biol Chem, 2003. 278(26): p. 23834-41.
  99. Taege, A., Seek and treat: HIV update 2011. Cleve Clin J Med, 2011. 78(2): p. 95-100.
  100. Matthews, B.W., Solvent content of protein crystals. J Mol Biol, 1968. 33(2): p. 491-7. 74. Sheriff, S., W.A. Hendrickson, and J.L. Smith, Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution. J Mol Biol, 1987. 197(2): p. 273-96.
  101. Andersen, M.D. and J.H. Faber, Structural characterization of both the non- proteolytic and proteolytic activation pathways of coagulation Factor XIII stud- ied by hydrogen-deuterium exchange mass spectrometry. Int. J. Mass. Spec- trom., 2011. 302(1-3): p. 139-148.
  102. Mertens, H.D. and D.I. Svergun, Structural characterization of proteins and complexes using small-angle X-ray solution scattering. J Struct Biol, 2010. 172(1): p. 128-41.
  103. Yee, V.C., Pedersen, L. C., Bishop, P. D., Stenkamp, R. E., D. C. Teller, Struc- tural evidence that the activation peptide is not released upon thrombin cleav- age of factor XIII. Thromb Res, 1995. 78(5): p. 389-97.
  104. Thaisrivongs, S., Skulnick, H. I., Turner, S. R., Strohbach, J. W., Tommasi, R. A., Johnson, P. D., Aristoff, P. A., Judge, T. M., Gammill, R. B., Morris, J. K., Romines, K. R., Chrusciel, R. A., Hinshaw, R. R., Chong, K. T., Tarpley, W. G., Poppe, S. M., Slade, D. E., Lynn, J. C., Horng, M. M., Tomich, P. K., Seest, E. P., Dolak, L. A., Howe, W. J., Howard, G. M., and K. D. Watenpaugh, Struc- ture-based design of HIV protease inhibitors: sulfonamide-containing 5,6- dihydro-4-hydroxy-2-pyrones as non-peptidic inhibitors. J Med Chem, 1996. 39(22): p. 4349-53.
  105. Blum, A., Boettcher, J., Heine, A., Klebe, G., and W. E. Diederich, Structure- guided design of C2-symmetric HIV-1 protease inhibitors based on a pyrrolidine scaffold. J Med Chem, 2008. 51(7): p. 2078-87.
  106. Vieira, E., Binggeli, A., Breu, V., Bur, D., Fischli, W., Guller, R., Hirth, G., Marki, H. P., Muller, M., Oefner, C., Scalone, M., Stadler, H., Wilhelm, M., and W. Wostl, Substituted piperidines--highly potent renin inhibitors due to induced fit adaptation of the active site. Bioorg Med Chem Lett, 1999. 9(10): p. 1397- 402. 50. Böttcher, J., Structure-based development of secondary amines as aspartic pro- tease inhibitors. 2008: Marburg. 51. Hasewinkel, C., Klonierung und Expression der Shigella-Pathogenitätsgene ipgE, ipgB2, ospD1 und ipaA mit Vinculin oder spa15. 2006, Marburg. 52. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R.D. , and A. Bairoch, Protein identification and analysis tools on the ExPASy Server. The Proteomics Protocols Handbook, 2005: p. 571– 607
  107. Fox, B.A., Yee, V. C., Pedersen, L. C., Le Trong, I., Bishop, P. D., Stenkamp, R. E., and D. C. Teller, Identification of the calcium binding site and a novel yt- terbium site in blood coagulation factor XIII by x-ray crystallography. J Biol Chem, 1999. 274(8): p. 4917-23.
  108. Acharya, K.R. and M.D. Lloyd, The advantages and limitations of protein crys- tal structures. Trends Pharmacol Sci, 2005. 26(1): p. 10-4.
  109. Todd, M.J. and E. Freire, The effect of inhibitor binding on the structural stabil- ity and cooperativity of the HIV-1 protease. Proteins, 1999. 36(2): p. 147-56. 31.
  110. Mildner, A.M., Rothrock, D. J., Leone, J. W., Bannow, C. A., Lull, J. M., Reardon, I. M., Sarcich, J. L., Howe, W. J., Tomich, C. S., and C. W. Smith, The HIV-1 protease as enzyme and substrate: mutagenesis of autolysis sites and generation of a stable mutant with retained kinetic properties. Biochemistry, 1994. 33(32): p. 9405-13.
  111. Dewar, D., S.P. Pereira, and P.J. Ciclitira, The pathogenesis of coeliac disease. Int J Biochem Cell Biol, 2004. 36(1): p. 17-24.
  112. Anderson, A.C., The process of structure-based drug design. Chem Biol, 2003. 10(9): p. 787-97.
  113. The PyMOL Molecular Graphics System, Version 1.3, Schrödinger, LLC.
  114. Ganser-Pornillos, B.K., M. Yeager, and W.I. Sundquist, The structural biology of HIV assembly. Curr Opin Struct Biol, 2008. 18(2): p. 203-17.
  115. Spinelli, S., Liu, Q. Z., Alzari, P. M., Hirel, P. H., and R. J. Poljak, The three- dimensional structure of the aspartyl protease from the HIV-1 isolate BRU. Bio- chimie, 1991. 73(11): p. 1391-6.
  116. Beninati, S. and M. Piacentini, The transglutaminase family: an overview: mini- review article. Amino Acids, 2004. 26(4): p. 367-72.
  117. Matthews, B.W., The γ Turn. Evidence for a new folded conformation in pro- teins. Macromolecules, 1972. 5(6): p. 818-819.
  118. Navia, M.A., Fitzgerald, P. M., McKeever, B. M., Leu, C. T., Heimbach, J. C., Herber, W. K., Sigal, I. S., Darke, P. L., and J. P. Springer, Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Na- ture, 1989. 337(6208): p. 615-20.
  119. Chen, J.S. and K. Mehta, Tissue transglutaminase: an enzyme with a split per- sonality. Int J Biochem Cell Biol, 1999. 31(8): p. 817-36.
  120. Prof. Dr. Torsten Steinmetzer für die Anfertigung des Zweitgutachtens und die Zusam- menarbeit im Faktor XIII – Projekt.
  121. Heine, and G. Klebe, Transglutaminase 2 as a target for structure-based drug design: New therapeutic options in celiac disease, in PharmSciFair. 2009: Nice, France
  122. Siegel, M. and C. Khosla, Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther, 2007. 115(2): p. 232-45.
  123. Seale, L., Finney, S., Sawyer, R. T., and R. B. Wallis, Tridegin, a novel peptidic inhibitor of factor XIIIa from the leech, Haementeria ghilianii, enhances fibri- nolysis in vitro. Thromb Haemost, 1997. 77(5): p. 959-63.
  124. SYBYL 8.0, Tripos International: 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA 68.
  125. Garzon, R.J., Pratt, K. P., Bishop, P. D., Le Trong, I., Stenkamp, R. E., and D. C. Teller, Tryptophan 279 is essential for the transglutaminase activity of co- agulation factor XIII: Functional and structural characterization. to be pub- lished.
  126. Weiss, M.S., H.J. Metzner, and R. Hilgenfeld, Two non-proline cis peptide bonds may be important for factor XIII function. FEBS Lett, 1998. 423(3): p. 291-6.
  127. Blum, A., Boettcher, J., Doerr, S., Heine, A., Klebe, G., and W. E. Diederich, Two solutions for the same problem: Multiple binding modes of pyrrolidine- based HIV-1 protease inhibitors. J Mol Biol, 2011. 410(4): p. 745-55.
  128. Campbell-Yesufu, O.T. and R.T. Gandhi, Update on human immunodeficiency virus (HIV)-2 infection. Clin Infect Dis, 2011. 52(6): p. 780-7. 13. Dressler, S., HIV/AIDS Taschenlexikon. 2008: www.aidsfinder.org.
  129. Müller, K., C. Faeh, and F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition. Science, 2007. 317(5846): p. 1881-6.
  130. Jain, E., Bairoch, A., Duvaud, S., Phan, I., Redaschi, N., Suzek, B. E., Martin, M. J., McGarvey, P., and E. Gasteiger, Infrastructure for the life sciences: de- sign and implementation of the UniProt website. BMC Bioinformatics, 2009. 10: p. 136.
  131. Sicker, T., Strukturelle Untersuchungen von Blutgerinnungsfaktor XIII. 2008: Jena.
  132. Griffin, M., R. Casadio, and C.M. Bergamini, Transglutaminases: nature's bio- logical glues. Biochem J, 2002. 368(Pt 2): p. 377-96.
  133. Liu, S., R.A. Cerione, and J. Clardy, Structural basis for the guanine nucleotide- binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci U S A, 2002. 99(5): p. 2743-7.
  134. Ahvazi, B., Kim, H. C., Kee, S. H., Nemes, Z., P. M. Steinert, Three- dimensional structure of the human transglutaminase 3 enzyme: binding of cal- cium ions changes structure for activation. EMBO J, 2002. 21(9): p. 2055-67.
  135. Strong, M., Sawaya, M. R., Wang, S., Phillips, M., Cascio, D., and D. Eisenberg, Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2006. 103(21): p. 8060-5.
  136. Feng, B.Y. and B.K. Shoichet, A detergent-based assay for the detection of promiscuous inhibitors. Nat Protoc, 2006. 1(2): p. 550-3.
  137. Pinkas, D.M., Strop, P., Brunger, A.T., and C. Khosla, Transglutaminase 2 un- dergoes a large conformational change upon activation. Plos Biology, 2007. 5(12): p. e327.
  138. Pedersen, L.C., Yee, V. C., Bishop, P. D., Le Trong, I., Teller, D. C., and R. E. Stenkamp, Transglutaminase factor XIII uses proteinase-like catalytic triad to crosslink macromolecules. Protein Sci, 1994. 3(7): p. 1131-5.
  139. Hutchinson, E.G. and J.M. Thornton, PROMOTIF--a program to identify and analyze structural motifs in proteins. Protein Sci, 1996. 5(2): p. 212-20.
  140. Koning, F., A tertiary twist to the transglutaminase tale. PLoS Biol, 2007. 5(12): p. e337.
  141. Hassell, A.M., An, G., Bledsoe, R.K.; Bynum, J.M., Carter, H.L., Deng, S.J., Gampe, R.T., Grisard, T.E., Madauss, K.P., Nolte, R.T., Rocque, W.J., Wang, L., Weaver, K.L., Williams, S.P., Wisely, G.B., Xu, R., and L.M. Shewchuk, Crystallization of protein-ligand complexes. Acta Crystallogr D Biol Crystal- logr, 2007. 63(Pt 1): p. 72-9.
  142. Moriarty, N.W., R.W. Grosse-Kunstleve, and P.D. Adams, electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr, 2009. 65(Pt 10): p. 1074-80.
  143. Afonine, P.V., R.W. Grosse-Kunstleve, and P.D. Adams, A robust bulk-solvent correction and anisotropic scaling procedure. Acta Crystallogr D Biol Crystal- logr, 2005. 61(Pt 7): p. 850-5.
  144. McKenna, Structure of the unbound form of HIV-1 subtype A protease: com- parison with unbound forms of proteases from other HIV subtypes. Acta Crystal- logr D Biol Crystallogr, 2010. 66(Pt 3): p. 233-42.
  145. Emsley, P., Lohkamp, B., Scott, W. G., and K. Cowtan, Features and develop- ment of Coot. Acta Crystallographica Section D-Biological Crystallography, 2010. 66(Pt 4): p. 486-501.
  146. Stamnaes, J., Pinkas, D. M., Fleckenstein, B., Khosla, C., and L. M. Sollid, Re- dox regulation of transglutaminase 2 activity. J Biol Chem, 2010. 285(33): p. 25402-9.
  147. Tovar-Vidales, T., A.F. Clark, and R.J. Wordinger, Focus on molecules: trans- glutaminase 2. Exp Eye Res, 2010. 93(1): p. 2-3.
  148. Yee, V.C., Pedersen, L. C., Le Trong, I., Bishop, P. D., Stenkamp, R. E., and D. C. Teller, Three-dimensional structure of a transglutaminase: human blood co- agulation factor XIII. Proc Natl Acad Sci U S A, 1994. 91(15): p. 7296-300.
  149. Blum, A., Böttcher, J., Sammet, B., Luksch, T., Heine, A., Klebe, G., and W. E. Diederich, Achiral oligoamines as versatile tool for the development of aspartic protease inhibitors. Bioorganic & Medicinal Chemistry, 2008. 16(18): p. 8574- 86.


* Das Dokument ist im Internet frei zugänglich - Hinweise zu den Nutzungsrechten